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GENERACIÓN AUTOMÁTICA DE PREGUNTAS BASADA EN
GRAFOS DE CONOCIMIENTO PARA OPTIMIZACIÓN DE

SISTEMAS DE RECUPERACIÓN AUMENTADA

Los sistemas de Generación por Recuperación Aumentada (RAG) permiten a los grandes
modelos de lenguaje (LLMs) acceder a información externa en tiempo real, superando así
las limitaciones impuestas por su propio entrenamiento, como la dificultad para controlar
con exactitud qué información conoce el modelo. Este enfoque no solo mejora significati-
vamente la calidad de las respuestas generadas por asistentes basados en LLMs, sino que
también permite incorporar conocimiento específico, confidencial o ausente en su entrena-
miento. Como consecuencia, los sistemas RAG se están adoptando de manera cada vez
más extendida y horizontal en la industria.

Los sistemas basados en RAG, sin embargo, enfrentan desafíos significativos relacio-
nados con la latencia y el costo computacional. Además, estos sistemas suelen recuperar
documentos que presentan alta similitud superficial pero baja diversidad semántica, lo que
reduce la cobertura del contexto relevante y limita la capacidad del modelo para generar
respuestas completas y bien fundamentadas.

Para mitigar estas limitaciones, esta tesis presenta KRAQ (Knowledge-graph Represen-
tative Automatic Questions), un sistema que permite precomputar conjuntos de preguntas
representativas para un corpus determinado a partir de un grafo de conocimiento. Para
ello, se realiza la detección de entidades y relaciones presentes en los textos con las cuales
se construye el grafo. Luego, se identifican comunidades “semánticas” dentro del grafo que
permiten la generación de resúmenes textuales. Finalmente, con un LLM fine-tuneado se
genera un conjunto de preguntas representativas a partir de dichos resúmenes. La principal
ventaja de este enfoque es su capacidad para generar preguntas que capturan relaciones
profundas presentes en el corpus, incluso cuando dichas relaciones se extienden a través
de múltiples documentos o no están formuladas explícitamente en el texto. De este modo,
se obtiene un conjunto de preguntas verdaderamente representativas del contenido, que
refleja de manera más fiel la estructura semántica subyacente.

Este listado de preguntas permite optimizar sistemas RAG: por un lado, (i) incremen-
tando la precisión mediante estrategias de recuperación combinada, donde se enriquece el
conjunto de documentos recuperados; y por otro, (ii) mejorando la latencia de sistemas de
RAG como Speculative RAG, utilizando las preguntas generadas para pre-computar los
embeddings necesarios para separar en subconjuntos los documentos.

La validación experimental, realizada en múltiples datasets estándar como TriviaQA,
BioASQ, PubHealth y HotPotQA, demostró la efectividad de KRAQ. Los resultados evi-
dencian que las preguntas representativas superan a los baselines por hasta 49 puntos
porcentuales, mientras que su aplicación en sistemas RAG impulsó mejoras de hasta un
3 % en la precisión y reducciones de hasta un 11.8 % en la latencia. La incorporación de
estas preguntas no solo mejora la eficiencia y precisión de RAG, sino que abre un camino
prometedor para escalar esta tecnología.

Palabras claves: Generación Aumentada por Recuperación (RAG), Modelos de Lenguaje
de Gran Escala (LLMs), Generación Automática de Preguntas (QG), Grafos de Conoci-
miento (KG), Clustering Semántico, Optimización de RAG.
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1. INTRODUCCIÓN

1.1. Motivación

En los últimos años, el desarrollo de los modelos de lenguaje de gran escala (LLMs,
por sus siglas en inglés) ha transformado profundamente las capacidades de los sistemas de
procesamiento del lenguaje natural, permitiendo avances notables en tareas de generación,
resumen, traducción y razonamiento [8, 55, 75]. Sin embargo, estos modelos presentan una
limitación estructural clave: su conocimiento está restringido a la información contenida
en los datos de entrenamiento y al momento temporal en que estos fueron recopilados.
Además, la combinación de su compleja arquitectura y su escala masiva los convierte en
sistemas inherentemente opacos, lo que dificulta controlar la información que realmente
poseen [35]. Esto conlleva desafíos significativos en dominios donde se requiere acceso a
conocimiento actualizado, especializado o confidencial [34].

Ante esta problemática, los sistemas de Generación por Recuperación Aumentada
(Retrieval-Augmented Generation, RAG) han emergido como una solución efectiva que
permite a los LLMs consultar información externa en tiempo real mediante la recuperación
de documentos relevantes, que luego se utilizan como contexto adicional para la generación
de respuestas. Este enfoque híbrido combina la capacidad generativa y de razonamiento
contextual de los LLMs con mecanismos de recuperación, permitiendo no solo mejorar la
precisión y factualidad de las respuestas, sino también incorporar información no presente
en el pre-entrenamiento, algo esencial en contextos dinámicos o sensibles [40]. Como re-
sultado, los sistemas RAG han sido ampliamente adoptados en aplicaciones industriales y
por proveedores de servicios en la nube que ofrecen servicios integrales de RAG [1].

No obstante, a pesar de sus ventajas, los sistemas RAG enfrentan limitaciones persis-
tentes. En primer lugar, el proceso de recuperación e integración de información externa
conlleva una carga computacional significativa, lo cual incrementa la latencia y el costo
operativo del sistema. En segundo lugar, los mecanismos de recuperación tradicionales
suelen basarse en medidas de similitud en el espacio de embeddings, lo que resulta en la
selección de documentos con alta similitud superficial pero baja diversidad semántica [2].
Esto afecta negativamente la cobertura de aspectos relevantes del corpus, comprometiendo
la calidad de las respuestas generadas. Además, se suma el problema del sesgo de posi-
ción [69], una consecuencia de los mecanismos de atención que favorecen la información
localizada al inicio del contexto, reduciendo la equidad en la integración de evidencia y
afectando a la precisión en las respuestas. Estas limitaciones son especialmente críticas en
dominios especializados como la medicina o el derecho, donde se exige precisión contextual,
razonamiento multihop y cobertura informativa amplia.

1.2. Contribuciones

Para abordar las limitaciones de los sistemas de Generación por Recuperación Aumen-
tada (RAG) (como la latencia, el costo computacional y la baja diversidad semántica en
la recuperación), esta tesis introduce una nueva metodología centrada en la generación
automática de preguntas. Proponemos Knowledge-graph Representative Automatic Ques-
tions (KRAQ), una herramienta diseñada para construir un conjunto de preguntas que

1



2 1. Introducción

capten la estructura semántica profunda del corpus. La hipótesis es que este conjunto de
preguntas, cuidadosamente generado a partir de comunidades semánticas identificadas en
un grafo de conocimiento, actúa como un activo valioso. Específicamente, estas preguntas
pueden enriquecer la fase de recuperación, mejorando la diversidad y precisión, y optimi-
zar la eficiencia computacional en el pipeline de ciertos sistemas RAG. Estas preguntas
actúan como puentes semánticos para enriquecer la recuperación y, a la vez, como proxies
precalculados que optimizan la eficiencia del pipeline.

A diferencia de enfoques previos de generación de preguntas en RAG que construyen
las preguntas directamente a partir de documentos individuales [25], esta tesis propone
un enfoque estructurado que modela el contenido del corpus como un grafo de conoci-
miento. En esta representación, las entidades y relaciones extraídas del texto se conectan
explícitamente, lo que permite capturar vínculos profundos entre los conceptos presentes
en distintos documentos. A continuación, se aplica un algoritmo de clustering [72] para
identificar comunidades semánticas de nodos, a partir de las cuales se generan resúmenes
representativos en lenguaje natural. Sobre estos resúmenes se aplica un modelo de len-
guaje fine-tuneado, capaz de producir preguntas que condensan las relaciones latentes y
significativas del corpus.

La herramienta se implementa utilizando el framework GraphRAG [19], que permite
construir el grafo de conocimiento a partir del corpus, identificar comunidades semánticas y
generar resúmenes textuales representativos. Además, se introduce un benchmark específico
para evaluar la relevancia del conjunto de preguntas generadas.

Adicionalmente, para demostrar la eficacia de KRAQ, esta tesis presenta dos aplica-
ciones concisas (que sirven como métricas indirectas del método) orientadas a mitigar
limitaciones críticas en los sistemas RAG actuales. La primera consiste en la creación de
un algoritmo de recuperación combinada, donde las preguntas generadas se utilizan para
enriquecer el conjunto de documentos recuperados, complementando las búsquedas reali-
zadas con la pregunta original del usuario. Esta estrategia se basa en la hipótesis de que
los documentos recuperados utilizando preguntas similares a la pregunta original obteni-
das con KRAQ cubren una mayor diversidad informativa, disminuyendo la redundancia
contextual observada en los métodos estándar de recuperación. [2].

La segunda aplicación apunta a mejorar la eficiencia computacional de Speculative
RAG [78], empleando las preguntas generadas por KRAQ para realizar un pre-cómputo
de los embeddings necesarios para crear los subconjuntos de documentos que luego serán
enviados a los RAG Drafters.

Para validar la efectividad de nuestro enfoque, se realizaron experimentos extensivos
sobre cuatro benchmarks estándar ampliamente utilizados en la comunidad: TriviaQA,
BioASQ, PubHealth y HotPotQA. Los resultados muestran mejoras consistentes. En la
evaluación directa de la calidad de las preguntas, KRAQ superó a los baselines de referencia
por hasta 49 puntos porcentuales en métricas de relevancia semántica. Adicionalmente, su
aplicación práctica demostró ser beneficiosa: se observó un incremento de hasta un 3 %
en la precisión del RAG tradicional usando la técnica de recuperación combinada, y una
reducción de hasta el 11.8 % en la latencia del Speculative RAG. Estos resultados validan
empíricamente la cobertura semántica de las preguntas generadas por KRAQ.

Así, esta tesis realiza una doble contribución: por un lado, a nivel teórico, propone una
arquitectura novedosa para la generación representativa de preguntas mediante grafos de
conocimiento, y por otro, a nivel experimental, demuestra su eficacia en mejorar el de-
sempeño de sistemas RAG existentes bajo distintos escenarios de evaluación. En conjunto,



1.3. Estructura de la tesis 3

estos aportes abren una vía prometedora hacia la construcción de sistemas de recupera-
ción más robustos y escalables, particularmente valiosos en dominios donde la precisión
contextual y la eficiencia computacional son críticas.

1.3. Estructura de la tesis

La presente tesis se organiza en los siguientes capítulos para desarrollar de manera
progresiva la problemática, las soluciones propuestas y su validación:

Capítulo 2 (Marco teórico y trabajos relacionados): Proporciona los fun-
damentos conceptuales necesarios para comprender las metodologías desarrolladas.
Se abordan los principios de los modelos de lenguaje modernos, incluyendo la ar-
quitectura Transformer y los embeddings. Se profundiza en los sistemas RAG, sus
componentes, ventajas y desafíos, así como en la optimizacion de Speculative Rag. Se
revisan trabajos previos en generación automática de preguntas y la representación
estructurada del conocimiento mediante grafos y análisis comunitario. Finalmente,
se analizan trabajos similares a las propuestas de esta tesis, estableciendo un diálogo
con el estado del arte.

Capítulo 3 (KRAQ): Introduce el núcleo de la contribución de esta tesis: el sis-
tema KRAQ. Se detalla exhaustivamente su metodología, desde la extracción de
conocimiento y construcción de un grafo, pasando por la detección de comunidades
semánticas y la síntesis de resúmenes, hasta la generación de preguntas represen-
tativas mediante un modelo de lenguaje fine-tuneado. Posteriormente, se presenta
la experimentación y los resultados de KRAQ, incluyendo los datasets utilizados,
las decisiones generales de implementación, el diseño de evaluación específico, y un
análisis de su rendimiento en la generación de preguntas de alta calidad semántica.

Capítulo 4 (Combined Retrieve RAG): Explora la primera aplicación práctica
de las preguntas generadas por KRAQ. Se presenta la metodología de Combined
Retrieve RAG, un algoritmo diseñado para enriquecer la diversidad de los documentos
recuperados y mejorar la precisión de los sistemas RAG. A continuación, se detallan
los experimentos realizados para evaluar esta propuesta, analizando su impacto en la
calidad de las respuestas y presentando estudios de ablación.

Capítulo 5 (Efficient Speculative RAG): Describe la segunda aplicación de
KRAQ, orientada a mejorar la eficiencia computacional del framework Speculative
RAG. Se introduce la metodología de Efficient Speculative RAG, que utiliza las pre-
guntas de KRAQ para permitir el pre-cómputo de embeddings instruidos. La sección
de experimentación evalúa la reducción de latencia obtenida y la preservación de la
calidad de respuesta, complementada con estudios de ablación.

Capítulo 6 (Conclusiones generales): Sintetiza los hallazgos principales de la
investigación, resume las contribuciones teóricas y prácticas, y discute las implica-
ciones de los resultados obtenidos. Finalmente, se proponen líneas de trabajo futuro
que podrían expandir las ideas y metodologías presentadas.

Adicionalmente, la tesis incluye un Apéndice con los prompts detallados utilizados en
las diversas etapas de generación y evaluación, así como la bibliografía consultada.



2. MARCO TEÓRICO

2.1. Fundamentos de modelos de lenguaje modernos

Los avances contemporáneos en el Procesamiento del Lenguaje Natural (PLN) se fun-
damentan en una rápida evolución de las arquitecturas de aprendizaje profundo. Esta
sección traza el recorrido desde los modelos pioneros de redes neuronales hasta la llegada
de la arquitectura Transformer, que sentó las bases para los potentes modelos de lenguaje
que se utilizan en la actualidad.

2.1.1. De redes neuronales a la revolución transformer

Las Redes Neuronales Artificiales (ANNs, por sus siglas en inglés) constituyen la base
computacional del aprendizaje profundo moderno. Estos modelos, inspirados vagamente en
la estructura del cerebro humano, son capaces de aprender funciones de mapeo complejas
directamente a partir de grandes volúmenes de datos. Mediante la optimización de sus
parámetros internos a través de algoritmos como la retropropagación y el descenso por
gradiente, las redes neuronales pueden identificar patrones intrincados y realizar tareas
sofisticadas en diversos dominios, incluyendo el PLN [24].

Un hito fundamental en la evolución del PLN fue la introducción de la arquitectura
Transformer por Vaswani et al. [75]. El Transformer se distingue por su innovador meca-
nismo de auto-atención (self-attention), que permite al modelo ponderar la importancia
de diferentes tokens de la secuencia entre si. Esta capacidad para capturar dependencias
a largo plazo y contextualizar la información de manera flexible, junto con su diseño inhe-
rentemente paralelizable, superó muchas de las limitaciones de arquitecturas secuenciales
previas como las Redes Neuronales Recurrentes (RNNs). La arquitectura Transformer origi-
nal comprende componentes de codificador (encoder), diseñados para procesar la secuencia
de entrada y generar representaciones contextualizadas, y componentes de decodificador
(decoder), orientados a generar una secuencia de salida, siendo ambos cruciales para tareas
de secuencia a secuencia como la traducción automática.

El impacto de la arquitectura Transformer ha sido transformador, sentando las bases
para el desarrollo de los actuales LLMs. Al escalar la profundidad y el ancho de los modelos
Transformer y entrenarlos sobre corpus textuales masivos, los investigadores han logrado
crear sistemas con una comprensión y capacidad de generación de lenguaje sin precedentes.
Estos LLMs, que se explorarán con más detalle en secciones posteriores, han redefinido el
estado del arte en una multitud de tareas de PLN y son un componente central de las
metodologías investigadas en esta tesis.

2.1.2. Embeddings: representando el significado

En el contexto del aprendizaje automático y, de manera crucial, en el PLN, los em-
beddings constituyen una técnica fundamental para representar datos categóricos discretos
en espacios vectoriales continuos y de menor dimensión. Antes de que el texto pueda ser
procesado por modelos de aprendizaje automático, este debe ser segmentado en unidades
más pequeñas llamadas tokens. Un token puede ser una palabra, una sub-palabra (e.g.,

4
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”embedding” podría dividirse en tokens como ”embed” y ”ding”) o incluso un carácter indi-
vidual, dependiendo del algoritmo de tokenización utilizado. Una vez fragmentado el texto,
los embeddings se utilizan para mapear estos tokens (o secuencias de tokens como frases y
documentos) a representaciones vectoriales densas. Estas representaciones permiten cap-
turar similitudes y relaciones semánticas entre las unidades del lenguaje, habilitando su
procesamiento eficiente por redes neuronales y otros algoritmos de aprendizaje [3, 50].

Representación vectorial densa

Tradicionalmente, las palabras eran representadas mediante codificaciones locales como
el one-hot encoding. En esta representación, cada palabra de un vocabulario V se mapea
a un vector binario de dimensión |V| (donde |V| es el tamaño total del vocabulario), en el
cual solo una entrada es igual a uno y todas las demás son cero. Si bien es simple, esta
representación presenta dos grandes desventajas: primero, genera vectores de muy alta
dimensión y extremadamente dispersos (es decir, con una abrumadora mayoría de ceros),
lo que es ineficiente computacionalmente; segundo, y más importante, carece de información
semántica intrínseca, ya que los vectores de palabras diferentes son ortogonales entre sí,
sin reflejar ningún tipo de similitud o relación (e.g., los vectores de ”rey” y ”reina” serían
tan distintos como los de ”rey” y ”manzana”).

Los embeddings superan estas limitaciones proyectando las palabras (u otras unidades
textuales) en un espacio vectorial denso de una dimensión d significativamente menor
que |V|. Un vector se considera denso porque la mayoría de sus elementos son valores de
punto flotante distintos de cero, cada uno contribuyendo a la representación del significado.
Formalmente, una función de embedding es un mapeo:

Embedding : V → Rd

donde d≪ |V|. En este espacio de embedding, la proximidad geométrica (medida, por ejem-
plo, por la distancia euclidiana o la similitud coseno) entre vectores busca reflejar relaciones
semánticas o contextuales entre las palabras correspondientes. Una propiedad deseable y a
menudo observada en buenos espacios de embedding es la capacidad de capturar analogías
mediante aritmética vectorial, como la famosa relación:

vec(rey)− vec(hombre) + vec(mujer) ≈ vec(reina)

Este tipo de relaciones vectoriales fue popularizado por modelos pioneros como Word2Vec
[50], que utiliza tareas de predicción contextual (como Skip-Gram, que predice palabras de
contexto dada una palabra central, o CBOW, Continuous Bag-of-Words, que predice una
palabra central a partir de su contexto) para aprender representaciones que preservan la
estructura semántica y sintáctica del lenguaje a partir de grandes corpus textuales.

Medición de similitud: Similitud Coseno

Una vez que las unidades textuales (palabras, frases, documentos) han sido representa-
das como vectores en un espacio de embedding, es fundamental poder cuantificar su simi-
litud o diferencia. Una de las métricas más utilizadas para este propósito es la similitud
coseno.

Dados dos vectores de embedding no nulos, A⃗ y B⃗, la similitud coseno mide el coseno del
ángulo entre ellos. Esta métrica evalúa la orientación de los vectores, independientemente
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de su magnitud. Su valor varía entre -1 (vectores exactamente opuestos) y 1 (vectores con
la misma orientación), donde 0 indica ortogonalidad (sin similitud de orientación). Un valor
más cercano a 1 indica una mayor similitud semántica.

La fórmula para la similitud coseno entre dos vectores A⃗ y B⃗ de n dimensiones es:

cos(A⃗, B⃗) =
A⃗ · B⃗
∥A⃗∥∥B⃗∥

=

∑n
i=1AiBi√∑n

i=1A
2
i

√∑n
i=1B

2
i

(2.1)

donde A⃗ · B⃗ es el producto punto de los vectores A⃗ y B⃗, y ∥A⃗∥ y ∥B⃗∥ son sus respectivas
magnitudes euclidianas (normas L2).

En el contexto del PLN, la similitud coseno es ampliamente utilizada para:

Encontrar las palabras más similares a una palabra dada.

Comparar la similitud semántica entre frases o documentos.

En sistemas de recuperación de información (como los RAG), para encontrar los
documentos o pasajes más relevantes para una consulta del usuario, comparando el
embedding de la consulta con los embeddings de los documentos indexados.

Su popularidad se debe a su eficacia para capturar la similitud semántica y a su relativa
insensibilidad a la longitud de los documentos (ya que la magnitud de los vectores se
normaliza).

Tipos de embeddings: estáticos vs. contextuales

Existen dos enfoques principales para obtener y utilizar embeddings:

Embeddings estáticos (o preentrenados): Modelos como Word2Vec [50], GloVe (Global Vec-
tors for Word Representation) [60], y FastText [6] aprenden representaciones vecto-
riales fijas para cada palabra del vocabulario sobre grandes corpus textuales. En
estos modelos, cada palabra tiene un único vector asociado, independientemente del
contexto específico en el que aparezca. FastText, además, aprende embeddings para
n-gramas de caracteres, lo que le permite generar vectores para palabras fuera del
vocabulario (OOV) y capturar mejor información morfológica.

Embeddings contextuales (o dinámicos): Con la llegada de arquitecturas más profundas
y contextuales, como las basadas en Transformers, surgieron modelos capaces de
generar embeddings que varían según el contexto en el que aparece una palabra. EL-
Mo (Embeddings from Language Models) [61] fue uno de los pioneros, utilizando
LSTMs bidireccionales. Posteriormente, modelos como BERT (Bidirectional Enco-
der Representations from Transformers) [15] y los propios LLMs generan embeddings
profundamente contextuales para cada token en una secuencia, lo que permite resol-
ver ambigüedades léxicas (e.g., la palabra ”banco” tendrá diferentes embeddings en
”banco de peces” vs. ”banco financiero”).

Rol crítico de los embeddings en LLMs y RAG

En los LLMs, los embeddings son un componente crítico. Constituyen la primera capa
del modelo, transformando la secuencia de tokens de entrada en representaciones numéricas
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que el resto de la red puede procesar. Además, durante el preentrenamiento y el fine-tuning,
estos embeddings se ajustan para capturar las complejas relaciones semánticas y sintácticas
presentes en los datos.

En los sistemas RAG, los embeddings desempeñan un papel doblemente esencial:

1. Para la indexación del corpus: Los documentos o chunks de la base de conoci-
miento externa se convierten en vectores de embedding y se almacenan en una base
de datos vectorial, creando un índice semántico.

2. Para la recuperación en tiempo de consulta: Cuando un usuario formula una
pregunta, esta también se convierte en un vector de embedding utilizando el mismo
modelo. Luego, se compara este embedding de consulta con los embeddings de los
documentos indexados (usualmente mediante similitud coseno) para identificar y re-
cuperar los fragmentos de texto más relevantes que servirán de contexto al LLM para
generar la respuesta.

La calidad de los embeddings y la efectividad de la métrica de similitud son, por lo tanto,
cruciales para el rendimiento de los sistemas RAG, ya que determinan la relevancia del
contexto proporcionado al LLM.

2.1.3. Modelos de lenguaje de gran escala (LLMs)

Los Modelos de Lenguaje de Gran Escala (LLMs) representan un avance significativo
en el Procesamiento del Lenguaje Natural como resultado de escalar la arquitectura Trans-
former (predominantemente las variantes decoder-only como LLaMA [70] o arquitecturas
encoder-decoder) a un número masivo de parámetros, desde miles de millones hasta billones
y entrenarlos en cantidades masivas de datos textuales, a menudo extraídos de la web [8, 11].

Principios arquitectónicos y preentrenamiento El objetivo de preentrenamiento más
común para los LLMs generativos (típicamente decoder-only) es la predicción del siguiente
token: dado un fragmento de texto, el modelo aprende a predecir el token más probable
que sigue en la secuencia. Es crucial destacar que, en lugar de predecir un único token
determinista, el LLM en realidad genera una distribución de probabilidad sobre todo el
vocabulario de posibles tokens para la siguiente posición. Durante la generación de texto
(inferencia), en lugar de elegir siempre el token más probable, se utiliza un proceso de
muestreo (sampling) para seleccionar el siguiente token a partir de esta distribución de
probabilidad. Este proceso introduce un grado de aleatoriedad controlada, lo que permite
generar un texto más variado y natural. Las estrategias de muestreo van desde la selección
determinista del token más probable (greedy decoding) hasta técnicas más sofisticadas que
consideran un subconjunto de los tokens más plausibles (e.g., top-k, nucleus sampling) pa-
ra aumentar la creatividad de la respuesta. A través de este simple pero potente objetivo
auto-supervisado, y gracias a la escala sin precedentes de los datos y del propio modelo,
los LLMs desarrollan una comprensión sorprendentemente profunda de la sintaxis, la se-
mántica, el conocimiento del mundo incorporado en los textos de entrenamiento, y ciertas
capacidades de razonamiento y abstracción [7].

Capacidades emergentes Uno de los hallazgos más notables en el desarrollo de LLMs
es el fenómeno de las capacidades emergentes [80]. Se trata de habilidades complejas
que no están presentes (o lo están de forma muy rudimentaria) en modelos más pequeños
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de la misma familia arquitectónica, pero que emergen de manera no lineal una vez que el
tamaño del modelo (número de parámetros) y/o la cantidad de datos de entrenamiento
superan ciertos umbrales críticos.

Ejemplos de capacidades emergentes incluyen:

Aprendizaje en pocos ejemplos (Few-Shot Learning): La capacidad de rea-
lizar nuevas tareas con un rendimiento razonable después de ver solo unas pocas
demostraciones (ejemplos de entrada-salida de la tarea) proporcionadas en el prompt
de entrada, sin necesidad de reentrenar o ajustar los pesos del modelo. Brown et al.
[8] demostraron esto extensamente con GPT-3.

Razonamiento aritmético y simbólico: Habilidad para resolver problemas ma-
temáticos simples o seguir cadenas de razonamiento lógico.

Generación de código: Capacidad para escribir código funcional en diversos len-
guajes de programación a partir de descripciones en lenguaje natural.

Comprensión avanzada de instrucciones: Modelos como GPT-4 [55] muestran
una habilidad sofisticada para seguir instrucciones complejas y matizadas en lenguaje
natural, incluso para tareas para las cuales no fueron explícitamente entrenados.

Limitaciones fundamentales de los LLMs

A pesar de los avances extraordinarios y las capacidades impresionantes demostradas
por los LLMs contemporáneos, como GPT-4 [55], PaLM [11] y LLaMA [70], estos siste-
mas presentan una serie de limitaciones estructurales, operativas y conceptuales. Estas
restricciones pueden mermar su aplicabilidad y fiabilidad en escenarios que demandan al-
ta precisión factual, conocimiento actualizado, interpretabilidad o razonamiento complejo.
Comprender estas limitaciones es crucial para el desarrollo de aplicaciones robustas y para
guiar la investigación futura [34].

Conocimiento estático y desactualizado. Una de las limitaciones más fundamentales
de los LLMs preentrenados radica en la naturaleza estática de su conocimiento. Estos
modelos aprenden a partir de un corpus de datos masivo que, una vez completado el
preentrenamiento, permanece fijo. Esto implica que:

Desactualización temporal: El conocimiento del LLM está intrínsecamente ligado
al corte temporal de sus datos de entrenamiento. No pueden incorporar información
sobre eventos, descubrimientos o desarrollos ocurridos posteriormente sin un reentre-
namiento o mecanismos de actualización, lo cual es costoso.

Ausencia de conocimiento específico o confidencial: Por diseño, no tienen
acceso a información específica de un dominio particular que no estuviera presente
en su corpus de preentrenamiento público, ni a datos privados o confidenciales de un
usuario u organización.

Esta amnesia respecto a la información nueva o no vista durante el preentrenamiento ha
sido una de las principales motivaciones para el desarrollo de arquitecturas híbridas como
RAG, que buscan complementar el conocimiento paramétrico del LLM con información
obtenida en tiempo real de fuentes externas [40].
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Alucinaciones y fiabilidad factual. Los LLMs, a pesar de su fluidez y coherencia apa-
rente, pueden generar respuestas que son plausibles y gramaticalmente correctas, pero
fácticamente incorrectas, inconsistentes con el contexto proporcionado, o incluso inven-
tadas. Este fenómeno se conoce comúnmente como alucinación (hallucination) [31]. Las
alucinaciones pueden surgir por diversas razones, incluyendo:

Errores o sesgos en los datos de entrenamiento.

La naturaleza probabilística de la generación de texto, que optimiza la verosimilitud
de la secuencia en lugar de la veracidad factual.

Dificultad para distinguir entre información memorizada y conocimiento inferido.

La propensión a las alucinaciones dificulta enormemente el uso de LLMs en dominios don-
de la precisión y la veracidad son críticas (e.g., medicina, finanzas, derecho), y subraya la
necesidad de mecanismos de verificación y validación.

Opacidad e interpretabilidad. Dada su vasta escala (miles de millones de parámetros)
y la complejidad de sus arquitecturas internas, los LLMs operan en gran medida como
cajas negras. Resulta extremadamente difícil:

Determinar el conocimiento específico: Precisar qué información exacta conoce
el modelo, cómo está representada internamente, y cuáles son las fuentes originales
de ese conocimiento.

Auditar el proceso de generación: Entender por qué el modelo genera una res-
puesta particular en lugar de otra, o trazar el razonamiento (si lo hubiera) que condujo
a una conclusión específica.

Identificar y Corregir Errores Sistemáticos: La opacidad dificulta el diagnóstico
y la corrección de sesgos o patrones de error recurrentes.

Esta falta de interpretabilidad y auditabilidad es una preocupación central, especialmente
en aplicaciones sensibles, y es un área activa de investigación [7].

Costos computacionales y sostenibilidad. El entrenamiento y, en menor medida, la
inferencia de los LLMs más grandes requieren recursos computacionales masivos:

Entrenamiento: Modelos como PaLM y GPT-4 necesitan clústeres de miles de
GPUs de alto rendimiento (o TPUs equivalentes) y semanas o meses de entrena-
miento, utilizando técnicas de paralelización de datos y modelos complejas como
FSDP (Fully Sharded Data Parallel) o ZeRO (Zero Redundancy Optimizer) [11, 68].
Esto implica un costo económico y energético considerable.

Inferencia: Aunque menos intensiva que el entrenamiento, la ejecución de LLMs
grandes para generar respuestas también demanda hardware especializado y optimi-
zaciones para lograr latencias aceptables, especialmente a escala.

Estos altos costos limitan el acceso a la investigación y desarrollo de LLMs de vanguardia
a un pequeño número de grandes corporaciones y consorcios, planteando cuestiones sobre
la democratización de la IA y la sostenibilidad ambiental.
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Limitaciones en razonamiento complejo. Si bien los LLMs pueden exhibir capacidades
de razonamiento sorprendentes en ciertas tareas, especialmente con técnicas de prompting
como chain-of-thought [62], todavía muestran debilidades en formas de razonamiento más
complejas o estructuradas:

Razonamiento multi-salto (Multi-hop Reasoning): Dificultad para integrar
consistentemente información proveniente de múltiples fragmentos de texto o realizar
múltiples pasos inferenciales para llegar a una conclusión.

Razonamiento simbólico y numérico: Limitaciones en la manipulación precisa
de símbolos, la realización de operaciones aritméticas exactas (especialmente con
números grandes o múltiples pasos), y el seguimiento de reglas lógicas formales.

Razonamiento de sentido común robusto: Aunque han mejorado, los LLMs aún
pueden fallar en tareas que requieren una comprensión profunda del sentido común
del mundo físico o social.

Estas limitaciones indican que, si bien los LLMs son excelentes modelos de lenguaje, su
capacidad para un razonamiento robusto y generalizable sigue siendo un área de desarrollo
activo [62].

Sesgo de posición y sensibilidad al orden del contexto. Incluso cuando se les pro-
porciona información relevante, los LLMs pueden no utilizarla de manera uniforme o equi-
tativa. Se ha observado que muchos modelos exhiben un sesgo de posición (positional bias),
lo que significa que la ubicación de la información dentro del prompt de entrada (el con-
texto) puede influir desproporcionadamente en la respuesta generada [69]. Este fenómeno
se manifiesta de varias maneras:

Preferencia por información al inicio o al final: A menudo, la información
presentada al principio o al final del contexto tiene una mayor probabilidad de ser
utilizada o recordada por el modelo en su respuesta, mientras que la información en
el medio del contexto (”lost in the middle”) puede ser ignorada o subutilizada, incluso
si es crucial [45].

Impacto en tareas de múltiples documentos: En sistemas RAG, donde se pro-
porcionan múltiples documentos recuperados como contexto, el orden en que se pre-
sentan estos documentos puede afectar significativamente la respuesta final.

Inconsistencias en las respuestas: El mismo conjunto de información, presentado
en diferente orden, podría llevar a respuestas diferentes.

Fine-tuning de LLMs para adaptación y especialización

El fine-tuning (ajuste fino) es una técnica fundamental en el ciclo de vida de los LLMs.
Consiste en adaptar un modelo preentrenado sobre vastos corpus de datos genéricos a una
tarea específica o a un dominio particular mediante un entrenamiento adicional sobre un
conjunto de datos más reducido y especializado para dicha tarea. Este procedimiento se
enmarca en el paradigma del aprendizaje por transferencia (transfer learning), permitiendo
aprovechar el conocimiento general del lenguaje, la sintaxis, la semántica y cierto grado
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de conocimiento del mundo que el modelo adquirió durante su costosa fase de preentrena-
miento [15, 64].

Formulación general. Dado un modelo de lenguaje preentrenado cuyos parámetros se
denotan por θpre, el proceso de fine-tuning busca encontrar una nueva configuración de
parámetros θ′ que minimice una función de pérdida específica para la tarea objetivo, Ltask.
Formalmente, el objetivo es:

θ′ = argmı́n
θ

E(x,y)∼Dtask [Ltask(f(x; θ), y)]

donde Dtask es el dataset específico de la tarea y f(x; θ) es la salida del modelo.

Estrategias principales de Fine-tuning. Existen diversas estrategias para realizar el
fine-tuning de LLMs:

Full Fine-tuning. Consiste en actualizar todos los parámetros del modelo preentrenado.
Aunque teóricamente ofrece la máxima flexibilidad, es computacionalmente muy costoso y
puede ser propenso al sobreajuste en datasets pequeños.

Instruction Tuning. Es una forma de fine-tuning supervisado donde el modelo se entrena
con ejemplos formulados como instrucciones en lenguaje natural [56]. El modelo aprende a
generar respuestas apropiadas condicionadas a una amplia variedad de prompts que descri-
ben la tarea (e.g., ”Resume el siguiente texto:”, ”¿Cuál es la capital de Y?”). Este enfoque
mejora la capacidad de los LLMs para seguir instrucciones y generalizar a tareas no vistas.
En esta tesis, el modelo generador de preguntas de KRAQ se beneficia de esta técnica (ver
Sección 3.1.5).

Parameter-Efficient Fine-tuning (PEFT). Dada la carga computacional del full fine-
tuning, las técnicas de PEFT buscan adaptar los LLMs modificando solo una pequeña
fracción de los parámetros o añadiendo un número reducido de parámetros entrenables.

LoRA (Low-Rank Adaptation). Propuesta por Hu et al. [27], LoRA mantiene congela-
das las matrices de pesos originales W de ciertas capas e introduce dos matrices pequeñas,
A y B, cuyo producto BA representa la actualización ∆W = BA. Solo se entrenan A y B.
El rango r de estas matrices es mucho menor que las dimensiones originales, reduciendo
drásticamente los parámetros entrenables y los requisitos de memoria, logrando un ren-
dimiento comparable al full fine-tuning en muchas tareas. La Ecuación 2.2 describe esta
actualización.

W ′ = W +∆W = W +BA (2.2)

QLoRA (Quantized LoRA). Introducida por Dettmers et al. [14], QLoRA optimiza
LoRA para mayor eficiencia en memoria. Permite el fine-tuning de LLMs muy grandes en
hardware con VRAM limitada. Combina:

Cuantización del Modelo Base a 4 bits: Los pesos del modelo preentrenado
se cuantizan a 4 bits usando el formato NF4 (NormalFloat4), optimizado para
distribuciones de pesos neuronales, reduciendo drásticamente la huella de memoria.
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Doble Cuantización: Se aplica una segunda cuantización a las constantes de cuan-
tización de la primera etapa.

Aplicación de LoRA: Las matrices de adaptación LoRA (A y B) se mantienen en
mayor precisión (e.g., BFloat16) y se aplican sobre el modelo base cuantizado. Solo
los parámetros de LoRA se actualizan.

Optimizadores Paginados (Paged Optimizers): Para manejar picos de memo-
ria.

QLoRA ha demostrado ser muy efectiva para el fine-tuning de LLMs con decenas de miles
de millones de parámetros en GPUs individuales. En esta tesis, tanto el modelo generador
de preguntas de KRAQ como el modelo MDrafter (en una fase exploratoria) fueron ajustados
utilizando QLoRA (ver Secciones 3.2.5 y 5.2.5).

2.2. Generación aumentada por recuperación (RAG)

Los sistemas de Generación por Recuperación Aumentada (Retrieval-Augmented Ge-
neration, RAG) han emergido como una arquitectura efectiva para mitigar algunas de
las limitaciones inherentes a los LLMs, en particular su dependencia de un conocimiento
paramétrico estático y su incapacidad para acceder a información externa o actualizada
posterior a su fase de preentrenamiento [40]. Al integrar un componente de recuperación de
información con un modelo generativo potente, los sistemas RAG pueden producir respues-
tas más precisas, factuales y contextualmente relevantes, basándose en evidencia obtenida
en tiempo real de una base de conocimiento externa.

2.2.1. Principios y componentes de los sistemas RAG

En tareas que requieren un conocimiento intensivo, donde la respuesta no puede derivar-
se únicamente del conocimiento general del LLM, una instancia de RAG puede entenderse
como el procesamiento de una consulta Q del usuario, utilizando un conjunto de documen-
tos de evidencia D = {d1, d2, . . . , dk} recuperados de un corpus externo E, para generar
una respuesta A. El objetivo es que la respuesta generada Â sea coherente, precisa y esté
fundamentada en la evidencia D.

Desde una perspectiva computacional, un sistema RAG estándar consta de dos com-
ponentes principales que operan secuencialmente:

1. Recuperador (Retriever, R): Dada una consulta del usuario Q, este módulo es
responsable de buscar y seleccionar dentro de un corpus de documentos E un sub-
conjunto D de k documentos o fragmentos de texto (chunks) que se consideran los
más relevantes para responder a Q. Formalmente, D = R(Q,E, k).

2. Generador (Generator, G): Este módulo, típicamente un LLM, recibe la consulta
original Q y el conjunto de documentos recuperados D como contexto adicional.
Utiliza esta información combinada para generar la respuesta final Â. Formalmente,
Â = G(Q,D).

La formulación general del proceso RAG puede, por lo tanto, expresarse como:

Â = G(Q,R(Q,E, k))
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Durante la evaluación de un sistema RAG (si se realiza de forma end-to-end o si se ajusta el
generador), se busca minimizar una función de pérdida L(Â, Aref) que mida la discrepancia
entre la respuesta generada Â y una respuesta de referencia Aref [29].

Se explicarán las evaluaciones usadas en esta tesis en la Sección 4.2.1

El proceso de recuperación detallado

El componente de recuperación es crucial para el éxito de un sistema RAG. En la ma-
yoría de las implementaciones modernas, y consistentemente en esta tesis, la recuperación
se basa en la similitud semántica en un espacio de embeddings:

1. Indexación del corpus (Offline):

El corpus documental E se divide primero en fragmentos manejables (chunks),
ci.
Cada chunk ci se codifica en un vector de embedding, e⃗i = Emb(ci), utilizando
un modelo de embeddings preentrenado.
Estos vectores e⃗i, junto con sus chunks originales ci (o referencias a ellos), se
almacenan en una base de datos vectorial especializada, que permite búsquedas
eficientes por similitud.

2. Recuperación en yiempo de consulta (Online):

La consulta del usuario Q se codifica en un vector de embedding q⃗ = Emb(Q)
utilizando el mismo modelo de embeddings que se usó para indexar el corpus.
Se calcula la similitud entre el vector de consulta q⃗ y todos los vectores de
chunk e⃗i en la base de datos indexada. La métrica de similitud más comúnmente
empleada es la similitud coseno (explicada en detalle en la Sección 2.1.2,
Ecuación 2.1).
Los k chunks cj cuyos vectores e⃗j presentan la mayor similitud coseno con q⃗ se
seleccionan como el conjunto de documentos relevantes D = {d1, . . . , dk}.

La calidad de los embeddings y la elección del umbral k son hiperparámetros críticos que
impactan directamente la relevancia del contexto proporcionado al generador.

Pseudocódigo de un RAG Tradicional

El flujo de trabajo de un sistema RAG tradicional puede resumirse en el Algoritmo 1.

Algorithm 1 Algoritmo de RAG Tradicional (con Búsqueda Vectorial Eficiente)
Require: Consulta del usuario Q, Base de Datos Vectorial DBvectorial (contiene embed-

dings y documentos/chunks), Modelo de Embedding Emb(·), Número de documentos
a recuperar k, Modelo Generador LLM G(·, ·)

Ensure: Respuesta generada Â
1: q⃗ ← Emb(Q) ▷ Codificar la consulta del usuario en un embedding
2: D ← DBvectorial.Search(q⃗, k) ▷ Recupera k chunks relevantes a q
3: contexto← ConcatenateDocuments(D) ▷ Formar el contexto para el LLM
4: Â← G(Q, contexto) ▷ Generar respuesta con el LLM y el contexto
5: return Â
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Nótese que, en la práctica, las bases de datos vectoriales realizan el paso de cálculo de
similitud y ordenamiento de manera mucho más eficiente utilizando estructuras de datos
como HNSW [28] o IVFADC, en lugar de una búsqueda exhaustiva.

2.2.2. Ventajas y desafíos de RAG

Ventajas de los sistemas RAG

Los sistemas RAG presentan múltiples beneficios que los posicionan como una alterna-
tiva robusta a los LLMs autónomos:

Conocimiento actualizable y específico: Al recuperar documentos de un corpus
externo, los RAG pueden incorporar información reciente o específica de un dominio
sin necesidad de reentrenar costosamente el LLM base. El corpus puede actualizarse
independientemente.

Reducción de alucinaciones: Al condicionar la generación en evidencia recupe-
rada, se reduce la tendencia de los LLMs a inventar información, aumentando la
factualidad de las respuestas.

Explicabilidad y trazabilidad: Dado que las respuestas están (idealmente) funda-
mentadas en los documentos recuperados, es posible citar las fuentes, lo que aumenta
la transparencia y permite al usuario verificar la información.

Control sobre la información: Permite restringir las respuestas a un corpus de
conocimiento específico y confiable, lo cual es crucial en entornos empresariales o
dominios sensibles.

Potencial de personalización: El corpus de recuperación puede adaptarse a usua-
rios o contextos específicos.

Limitaciones y desafíos inherentes

No obstante, los RAG también presentan desafíos importantes que deben ser conside-
rados:

Dependencia de la calidad de recuperación (Retrieval Quality): Si el recu-
perador falla en encontrar los documentos verdaderamente relevantes, o si recupera
información ruidosa, contradictoria o sesgada, la calidad de la respuesta generada
por el LLM se verá comprometida, incluso si el LLM es muy potente [2].

Sensibilidad al número y orden de documentos: La elección de cuántos docu-
mentos recuperar (k) es crítica. Demasiados documentos pueden abrumar al LLM o
exceder su ventana de contexto; muy pocos pueden omitir información vital. Además,
muchos LLMs exhiben un sesgo de posición, dando más importancia a la información
al inicio o al final del contexto [69].

Costo computacional en inferencia: Aunque se evita el reentrenamiento, cada
consulta requiere ejecutar el pipeline completo de recuperación (búsqueda en base de
datos vectorial) y generación (inferencia del LLM), lo que puede introducir latencia
y ser costoso a gran escala.
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Desafíos en la síntesis de evidencia múltiple: Integrar información de múltiples
documentos recuperados de manera coherente, resolver contradicciones entre ellos, o
asegurar que toda la evidencia relevante sea utilizada por el LLM, sigue siendo un
desafío abierto intrínseco de los LLMS.

Estas limitaciones impulsan la investigación activa en la mejora de cada componente y en
el desarrollo de estrategias más sofisticadas, algunas de las cuales se exploran en la presente
tesis.

2.2.3. Speculative RAG

Para abordar las limitaciones explicadas en la seccionan anterior, una línea de investi-
gación relevante se ha centrado en arquitecturas que mejoran la eficiencia y exploran una
mayor diversidad semántica. Un ejemplo paradigmático de esta dirección es Speculative
RAG, introducido por Wang et al. [78]. Este enfoque adapta la estrategia de draft-then-
verify, popularizada por técnicas de speculative decoding en la generación de LLMs [82], al
contexto específico de los sistemas RAG.

Principios fundamentales del paradigma Draft-then-Verify en RAG. En lugar
de que un único LLM, usualmente grande y costoso, procese todo el contexto recuperado
para generar la respuesta, Speculative RAG emplea un sistema de dos etapas. Primero,
múltiples modelos ”borrador” (MDrafter), que pueden ser LLMs más pequeños y, por ende,
más rápidos, generan en paralelo un conjunto de respuestas candidatas. Cada uno de estos
modelos borradores opera sobre un subconjunto diferente de los documentos recuperados,
donde cada subconjunto está diseñado para capturar distintas perspectivas respecto a la
consulta. Posteriormente, un modelo ”verificador” (MVerifier), que puede ser un LLM más
potente, evalúa estos borradores y selecciona el que se considera de mayor calidad como la
respuesta final. Esta paralelización de la generación de borradores y la especialización de
tareas pueden conducir a una reducción en la latencia y a una exploración más amplia del
espacio de posibles respuestas.

Construcción de subconjuntos de documentos con embeddings instruidos. Un
aspecto crucial de Speculative RAG es cómo se construyen los subconjuntos de docu-
mentos que se proporcionan a cada modelo borrador. Dado un conjunto de documentos
D = {d1, d2, . . . , dn} recuperados inicialmente para una pregunta original Q, el sistema
primero genera representaciones vectoriales (embeddings) de estos documentos que están
explícitamente ”instruidos” o condicionados por la pregunta Q. Para ello, se emplea un
modelo de embeddings con un encoder especializado, como InBedder-RoBERTa [59], que
produce una representación E(di | Q) para cada documento di. La instrucción proporciona-
da por la pregunta Q al encoder de embeddings tiene como objetivo mejorar la agrupación
semántica de los documentos en relación con la consulta específica, un aspecto fundamental
para la posterior generación de perspectivas diversas en los borradores. Una vez obteni-
dos estos embeddings instruidos, los documentos se agrupan en k clústeres, mediante el
algoritmo K-Means [47]. A partir de estos clústers, que representan diferentes perspectivas
temáticas de la información recuperada, se generan m subconjuntos de documentos δj ⊂ D.
Cada subconjunto δj se construye muestreando un único documento de cada uno de los k
clústeres. Esta estrategia de muestreo tiene un doble propósito: reducir la redundancia de
información dentro de cada subconjunto y asegurar que cada uno de ellos cubra, idealmen-
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te, todas las perspectivas identificadas frente a la pregunta del usuario.

Generación paralela de borradores y proceso de verificación. Cada subconjunto de
documentos δj se proporciona como entrada a una instancia del modelo borrador MDrafter,
junto con la pregunta original Q. Para cada subconjunto, MDrafter genera una respuesta
tentativa αj y su correspondiente justificación o razonamiento (racional) βj , que explica
cómo se llegó a αj a partir de δj . Wang et al. [78] señalan que los modelos MDrafter
pueden ser Fine-Tuneados para generar esta dupla de respuesta y racional. Este proceso
de generación de m pares (αj , βj) se puede realizar en paralelo, lo que constituye una de
las fuentes de optimización de tiempo. Ver prompt exacto para la generación de borradores
en el Apéndice 7.5

Posteriormente, el modelo generalista MVerifier, que no requiere un fine-tuning específico
para esta tarea de evaluación, procesa cada par (αj , βj). Para cada uno, se computan
típicamente tres puntuaciones (scores) distintas que contribuyen a un score de confianza
global ρj :

ρdraft
j : Mide la confianza o probabilidad con la que MDrafter generó el par (αj , βj)

dado Q y δj . Formalmente PMDrafter(βj | Q, δj) + PMDrafter(αj | Q, δj , βj).

ρself-contain
j : Evalúa la coherencia interna del par (αj , βj) generado por

MDrafter PMDrafter(αj , βj | Q, δj).

ρself-reflect
j : Captura la evaluación que hace MVerifier sobre la calidad del racional βj

como soporte para la respuesta αj . Esto se obtiene de la probabilidad con la que
MVerifier genera una afirmación positiva (e.g., ”Sí”) en respuesta a una meta-pregunta
como: ”¿Considera que la justificación βj apoya adecuadamente la respuesta αj?”,
condicionada por Q,αj , y βj . Ver prompt exacto en Apéndice 7.6.

El score final para cada borrador j se calcula como el producto de estas tres probabilidades:

ρj = ρdraft
j · ρself-contain

j · ρself-reflect
j

La respuesta final Â del sistema se selecciona como aquella respuesta borrador αj que
maximiza este score combinado ρj .

Pseudocódigo. El procedimiento completo de Speculative RAG se detalla en el Algorit-
mo 2
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Algorithm 2 Algoritmo de Speculative RAG (Adaptado de Wang et al. [78])
Require: Pregunta Q, conjunto de documentos recuperados D = {d1, d2, . . . , dN}
Require: Número de clústeres k, número de borradores m
Ensure: Respuesta predicha Â
1: function SpeculativeRAG(Q,D, k,m)
2: E ← {E(di | Q) para cada di ∈ D} ▷ Embeddings instruidos
3: {C1, . . . , Ck} ← KMeans(E, k) ▷ Clustering en k grupos
4: ∆← ∅ ▷ Subconjuntos de documentos
5: for j = 1 to m do
6: δj ← {SampleOne(Cl) para cada l = 1 . . . k} ▷ Un doc por clúster
7: ∆← ∆ ∪ {δj}
8: B ← ∅ ▷ Lista de borradores con scores
9: for all δj ∈ ∆ in parallel do

10: (αj , βj)←MDrafter(Q, δj) ▷ Respuesta y racional
11: ρdraft

j ← P (βj | Q, δj) + P (αj | Q, δj)

12: ρself-contain
j ← P (αj , βj | Q, δj)

13: ρself-reflect
j ← PMVerifier(“Yes” | Q,αj , βj)

14: ρj ← ρdraft
j · ρself-contain

j · ρself-reflect
j

15: B ← B ∪ {(αj , ρj)}
16: (Â,_)← argmáx(αj ,ρj)∈B ρj ▷ Selección final
17: return Â

Limitaciones computacionales de Speculative Rag

A pesar de sus beneficios en términos de eficiencia en la etapa de generación y la promo-
ción de la diversidad semántica, Speculative RAG presenta una limitación computacional
clave. Como se mencionó, el uso de embeddings instruidos por la pregunta Q (e.g., E(di | Q)
con InBedder-RoBERTa) es fundamental para la calidad del clustering y, por ende, para
la efectividad del muestreo de documentos y el razonamiento posterior. La importancia de
este condicionamiento se demuestra empíricamente en Wang et al. [78, Sección 3.2].

El problema principal radica en que el cálculo de estos embeddings instruidos debe
realizarse en línea (online), es decir, por cada nueva consulta Q que formula el usuario
y para la totalidad de los documentos di recuperados para esa consulta. Esto se debe
a que los embeddings son, por diseño, dependientes de Q. A diferencia de los sistemas
de recuperación tradicionales donde los embeddings de los documentos se precomputan
y se almacenan en un índice, aquí el condicionamiento por Q impide este pre-cómputo
directo. En términos prácticos, esto significa que cada vez que un usuario formula una nueva
pregunta, el sistema se ve obligado a ejecutar el costoso modelo de embeddings instruidos
sobre todos los documentos recuperados. En escenarios con múltiples usuarios concurrentes
o un alto volumen de consultas, y especialmente si el número de documentos recuperados
N es grande, la carga computacional de esta etapa puede volverse prohibitiva y constituir
el principal cuello de botella del pipeline. Este costo computacional afecta negativamente
la aplicabilidad del método en contextos que demandan baja latencia, como asistentes
conversacionales o sistemas de búsqueda interactiva. La propuesta de Efficient Speculative
RAG en esta tesis (detallada en la Sección 5.1) busca mitigar precisamente este cuello
de botella mediante la integración de las preguntas representativas generadas por KRAQ,
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permitiendo un pre-cómputo efectivo de los embeddings instruidos.

2.3. Generación automática de preguntas

La Generación Automática de Preguntas (QG, por sus siglas en inglés) es una tarea
del PLN que consiste en crear preguntas textuales a partir de diversas modalidades de
entrada, tales como texto, datos estructurados o incluso imágenes, las cuales denotamos
genéricamente como X [25]. Dado un input X , y opcionalmente una respuesta específica A
(ya que algunas tareas de QG son conscientes de la respuesta y otras no), el objetivo de la
QG es aprender una función de mapeo fθ que genere una pregunta textual Q. Formalmente,
la tarea puede expresarse como:

fθ : (X , A∗)→ Q (2.3)

donde A∗ indica que la respuesta es un input opcional. La pregunta generada Q = ⟨q1, q2, . . . , qn⟩
está compuesta por una secuencia de n tokens qi, seleccionados de un vocabulario predefi-
nido V. En la práctica, la función fθ se implementa comúnmente mediante arquitecturas de
redes neuronales, tales como RNNs [18], modelos basados en la arquitectura Transformer
o LLMs [17, 75]

2.3.1. Aplicaciones

La QG ha demostrado ser una herramienta versátil en múltiples áreas del procesamien-
to del lenguaje natural, extendiendo su utilidad desde sistemas tradicionales de pregunta-
respuesta hasta entornos educativos y conversacionales.. A continuación, se describen en
detalle las aplicaciones en las que QG ha generado impacto, culminando con la propuesta
central de esta tesis: su incorporación estratégica en pipelines de RAG.

Datasets QA. Uno de los usos más consolidados de QG es en la generación de datos
sintéticos para entrenar sistemas de QA. Dado que la creación manual de pares pregun-
ta–respuesta es costosa y limitada en escala, la generación automática permite ampliar
significativamente los datasets disponibles [18]. Esta estrategia permite, en la práctica,
construir asistentes y chatbots más robustos y precisos, al nutrir los sistemas con datos de
entrenamiento más diversos y abundantes.

Educación personalizada y tutoría inteligente. En el ámbito educativo, QG permite
adaptar la generación de preguntas al contenido y nivel del estudiante. Los sistemas de
tutoría inteligente (Intelligent Tutoring Systems, ITS) pueden utilizar QG para generar
encuestas, ejercicios o evaluaciones alineadas con el progreso individual del alumno [54].
Por ejemplo, Bull2Sum [23] no solo produce preguntas relevantes para textos educativos,
sino que también contribuye a la construcción de datasets pedagógicos significativos. Esto
se traduce en experiencias de aprendizaje más dinámicas y personalizadas, con un impacto
positivo en la comprensión y retención del contenido.

Sistemas conversacionales. Los asistentes virtuales, bots de atención al cliente y pla-
taformas de diálogo interactivo se benefician de QG para mantener conversaciones fluidas
y naturales al proponer siguientes preguntas posibles del usuario. La capacidad de gene-
rar preguntas de seguimiento pertinentes y contextualizadas mejora significativamente la
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calidad de la interacción [16]. El trabajo de Pan et al. [57] sobre generación de preguntas
conversacionales (Conversational Question Generation, CQG) resalta la importancia de
incorporar el historial del diálogo y el contexto semántico en la generación de preguntas,
haciendo que las respuestas y preguntas formuladas por el sistema sean más coherentes y
humanas, y evitando así interacciones repetitivas o poco atractivas.

Optimización de sistemas RAG. Una de las aplicaciones clave es el uso de la generación
de preguntas para optimizar sistemas RAG. El sistema KRAQ, propuesto en este trabajo,
produce preguntas representativas que condensan temáticamente el contenido del corpus
y permiten mejorar los sistemas RAG en dos dimensiones principales:

Mejora de la precisión y cobertura semántica: Mediante la estrategia de re-
cuperación combinada (Combined Retrieve RAG, detallada en la Sección 4.1), las
preguntas de KRAQ se utilizan como consultas complementarias que amplían y di-
versifican el conjunto de documentos recuperados. Se hipotetiza que esto proporciona
al LLM un contexto más rico y variado, lo que conduce a una mejora en la precisión
y la cobertura semántica de las respuestas generadas.

Mejora de la eficiencia computacional: En el contexto de Speculative RAG
(explicado en la Sección 5.1), las preguntas representativas de KRAQ permiten el
pre-cómputo de embeddings instruidos. Esta optimización, denominada Efficient Spe-
culative RAG, está diseñada para reducir la latencia del algoritmo al evitar el costoso
cálculo de embeddings en línea para cada consulta del usuario.

Este enfoque posiciona a la QG no solo como una herramienta generativa per se, sino como
un componente estratégico dentro del pipeline de recuperación y generación, orientado a
mejorar tanto la calidad como la eficiencia de los sistemas RAG.

2.3.2. Avances recientes

La generación automática de preguntas (QG) puede abordarse a partir de distintos
tipos de datos de entrada, como información estructurada (proveniente de grafos de cono-
cimiento o bases de datos), elementos visuales (imágenes, videos) o, como es más frecuente
y relevante para este trabajo, texto no estructurado [25]. Mientras que la QG a partir de
entradas estructuradas suele emplear modelos como los Graph2Seq [4, 10] y la QG visual
se apoya en arquitecturas multimodales [9, 83], esta tesis se enfoca exclusivamente en la
generación de preguntas desde texto libre, modalidad conocida como Text-based Question
Generation (TQG).

La TQG ha evolucionado significativamente en los últimos años, impulsada por el
avance de los modelos de lenguaje preentrenados (PLMs) y, más recientemente, por los
LLMs. Inicialmente, los modelos de TQG seguían el paradigma clásico de secuencia a
secuencia (Seq2Seq), empleando arquitecturas basadas en RNNs (como LSTMs o GRUs)
[18]. Posteriormente, la arquitectura Transformer [75] fue adoptada para mejorar la captura
de dependencias de largo alcance en el texto de entrada [76]. Sin embargo, estos enfoques,
aunque pioneros, presentaban limitaciones al procesar documentos extensos debido a la
complejidad cuadrática de la auto-atención o a la dificultad de las RNNs para mantener
información a través de secuencias muy largas. Además, a menudo sufrían problemas de
sobreajuste debido a la relativa escasez de datos de entrenamiento específicos y de alta
calidad para QG.
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El surgimiento de modelos preentrenados masivos como T5 [65], BART [39], y UNILM
[17], entre otros, marcó un punto de inflexión. Estos modelos, entrenados en vastos corpus
textuales con objetivos auto-supervisados (como la predicción de palabras enmascaradas o
la decodificación de secuencias), aprenden representaciones lingüísticas ricas y generaliza-
bles. Esto permitió su posterior fine-tuning sobre tareas de QG con conjuntos de datos más
pequeños, logrando mejoras sustanciales en la fluidez, coherencia y precisión semántica de
las preguntas generadas.

Dentro de esta línea, trabajos recientes han explorado arquitecturas más sofisticadas
y mecanismos de control. Por ejemplo, SG-CQG [16] para la generación de preguntas
conversacionales y MultiFactor [81] para QG con planificación de contenido multinivel,
investigan arquitecturas modulares, el control explícito del tipo de pregunta y la incor-
poración de mecanismos de planificación semántica. Estos esfuerzos buscan aumentar la
relevancia, la diversidad y la complejidad de las preguntas generadas, yendo más allá de la
simple transformación sintáctica del texto de entrada.

Paralelamente, se ha observado una tendencia creciente hacia el uso de representaciones
estructuradas intermedias, como grafos semánticos o redes de entidades extraídas del texto
fuente, para enriquecer el contexto y mejorar la selección de contenido relevante para
la QG [21, 58]. Esta integración de representaciones estructuradas (derivadas del texto
no estructurado) con modelos de generación constituye una línea de trabajo que conecta
directamente con el enfoque propuesto en esta tesis, donde el grafo de conocimiento juega
un papel central.

Con la llegada de los LLMs de última generación, como los de la familia GPT [8,
55], se ha explorado la generación de preguntas bajo esquemas de zero-shot (sin ejemplos
específicos de la tarea) y few-shot (con unos pocos ejemplos) utilizando técnicas de in-
context learning y prompt engineering [42]. Estos modelos ofrecen ventajas notables en
términos de generalización y flexibilidad, ya que pueden generar preguntas para una amplia
variedad de contextos sin necesidad de un fine-tuning específico. No obstante, aún presentan
desafíos en el control fino de la generación (e.g., asegurar que la pregunta sea sobre un
aspecto particular del texto), en la cobertura temática exhaustiva de corpus extensos, y en
la interpretabilidad del proceso generativo.

En esta tesis, nos situamos dentro de esta última ola de desarrollos, proponiendo un en-
foque híbrido. Se aprovecha la potencia generativa de los modelos preentrenados (mediante
fine-tuning específico), pero como novedad se incorpora un pipeline estructurado que utili-
za grafos de conocimiento y la detección de comunidades semánticas. Esta estructuración
previa del corpus permite guiar la generación de preguntas de manera que se logre una
cobertura temática más balanceada y representativa del contenido global, optimizando así
su utilidad posterior en la mejora de sistemas RAG, como se detalla en el Capítulo 3.

2.4. Grafos de Conocimiento y detección de comunidades

Los métodos propuestos en esta tesis, particularmente el sistema KRAQ, se fundamen-
tan en la capacidad de transformar corpus textuales en representaciones estructuradas que
facilitan un análisis semántico profundo y la identificación de agrupaciones temáticas. En
esta sección, se describen dos pilares conceptuales para este proceso: los Grafos de Cono-
cimiento (KGs) como formalismo para representar información semantica, y el Clustering
en Grafos como técnica para descubrir comunidades cohesivas dentro de estas estructuras.
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2.4.1. Grafos de Conocimiento

Los Grafos de Conocimiento (Knowledge Graphs, KGs) se han consolidado como una
poderosa herramienta para representar información de manera estructurada, capturando
entidades del mundo real y las complejas relaciones que existen entre ellas. A diferencia
de las bases de datos relacionales tradicionales o el texto no estructurado, los KGs ofrecen
una representación semántica rica, interpretable y fácilmente navegable, lo que facilita el
razonamiento y el descubrimiento de conocimiento [30, 53].

Definición y estructura

Formalmente, un grafo de conocimiento se define comúnmente como un conjunto de
tripletas factuales de la forma (h, r, t), donde h (entidad cabeza o head) y t (entidad
cola o tail) son nodos que representan entidades (e.g., personas, organizaciones, lugares,
conceptos, eventos), y r es una arista dirigida y etiquetada que representa la relación
semántica que vincula a h con t (e.g., nació_en, es_miembro_de, causa_de). Por lo tanto,
un KG puede modelarse como un multigrafo dirigido y etiquetado G = (V,E,L), donde
V es el conjunto de nodos (entidades), E es el conjunto de aristas (relaciones), y L es un
conjunto de etiquetas para esas relaciones.

Esta estructura permite una representación explícita del conocimiento que va más allá
de la simple coocurrencia de palabras, capturando el significado y el contexto de las inter-
acciones entre entidades.

Construcción de Grafos de Conocimiento

La construcción de un KG, también conocida como populación de KG, puede realizarse
a partir de diversas fuentes:

Fuentes estructuradas y semi-estructuradas: Utilizando bases de datos exis-
tentes, hojas de cálculo, o información de la web estructurada (e.g., tablas HTML,
infoboxes de Wikipedia). KGs a gran escala como DBpedia, YAGO o Wikidata se
han construido en gran medida a partir de este tipo de fuentes.

Texto no Estructurado: Mediante técnicas de PLN, que incluyen:

• Reconocimiento de entidades nombradas (NER): Para identificar men-
ciones de entidades en el texto y clasificarlas (e.g., Persona, Organización, Lu-
gar).

• Extracción de relaciones (RE): Para identificar relaciones semánticas entre
las entidades detectadas. Esto puede hacerse con enfoques basados en patrones,
aprendizaje automático supervisado, o más recientemente, mediante Open In-
formation Extraction (OpenIE) o el uso de LLMs para generar tripletas (h, r, t)
directamente a partir de oraciones. Por ejemplo, de la oración ”Albert Einstein
formuló la teoría de la relatividad”, se podría extraer la tripleta (Albert Einstein,
formuló, teoría de la relatividad).

En los últimos años, ha habido un interés creciente en la construcción de KGs ”orientados a
la tarea” o ”contextuales”, donde el grafo se construye o se adapta dinámicamente para ser
relevante para una consulta o un conjunto de documentos específico, en lugar de intentar
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modelar todo el conocimiento universal [87]. Esta aproximación es particularmente rele-
vante para aplicaciones como RAG, donde se busca sintetizar un contexto estructurado a
partir de un subconjunto de documentos recuperados. En esta tesis, como se detallará en la
Sección 3.1, se utiliza el framework GraphRAG [19], que emplea LLMs para la extracción
de entidades, relaciones y afirmaciones a partir de un corpus textual para construir un KG.

Integración con LLMs y sistemas RAG

La integración de KGs con LLMs y, específicamente, con sistemas RAG, es un área
de investigación activa y prometedora que busca combinar lo mejor de ambos mundos: la
capacidad de razonamiento estructurado y el conocimiento factual explícito de los KGs con
la fluidez generativa y la comprensión del lenguaje natural de los LLMs. Varias estrategias
de integración han sido exploradas:

KGs como fuente de recuperación en RAG: En lugar de (o además de) recu-
perar pasajes de texto plano, el componente de recuperación puede consultar un KG
para obtener hechos relevantes, entidades relacionadas o subgrafos que proporcionen
un contexto estructurado al LLM generador [85, 86].

Construcción de KGs a partir de documentos recuperados: El sistema RAG
puede construir dinámicamente un KG local a partir de los documentos recuperados
para una consulta específica. Este KG contextual puede luego ser utilizado para refi-
nar la comprensión, identificar entidades clave o guiar la generación de la respuesta.

Uso de KGs para mejorar la Generación: La información del KG puede utilizar-
se para controlar o restringir la generación del LLM, asegurando que las respuestas
sean consistentes con los hechos del KG o que se enfoquen en entidades/relaciones
particulares.

GraphRAG y enfoques similares: El trabajo de Edge et al. [19], denominado
GraphRAG, propone un pipeline donde se construye un KG global a partir de un
corpus. Luego, se utilizan técnicas de detección de comunidades en este grafo para
identificar agrupaciones temáticas. A partir de estas comunidades (y sus resúmenes
textuales generados por LLMs), se pueden realizar tareas como la sumarización glo-
bal del corpus o la respuesta a preguntas que requieren información de múltiples
documentos. Este enfoque, que sirve de base para la primera parte del pipeline de
KRAQ, demuestra cómo la estructura del KG puede guiar la síntesis de información
a diferentes niveles de granularidad.

En el contexto de esta tesis, la construcción de un grafo de conocimiento a partir del cor-
pus documental es el primer paso fundamental del sistema KRAQ. Este KG permite luego
identificar comunidades semánticas, generar resúmenes representativos por comunidad y,
finalmente, producir un conjunto de preguntas que capturen la esencia temática del cor-
pus. Estas preguntas son luego utilizadas para optimizar los sistemas RAG, demostrando
cómo los KGs pueden actuar como una capa intermedia crucial para una interacción más
explicable, eficiente y controlada entre la recuperación de información y la generación de
lenguaje.
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2.4.2. Clustering en grafos

El clustering en grafos, más comúnmente conocido en el análisis de redes como detección
de comunidades (community detection), es una tarea fundamental que busca particionar
los nodos de un grafo en grupos o clústeres. El principio es que los nodos dentro de una
misma comunidad deben estar más densa o fuertemente conectados entre sí que con los
nodos pertenecientes a otras comunidades [22, 32].

Modularidad: una métrica para la calidad de las comunidades

Una de las métricas más influyentes y ampliamente utilizadas para cuantificar la calidad
de una partición de un grafo en comunidades es la modularidad, introducida por Newman
[52]. La modularidad Q mide la fracción de las aristas que caen dentro de las comunida-
des dadas, menos la fracción esperada si las aristas se distribuyeran al azar manteniendo
los grados de los nodos. Un valor de modularidad positivo y alto indica una estructura
comunitaria fuerte y bien definida.

Para un grafo no dirigido con m aristas y una partición en c comunidades, la modula-
ridad se define como:

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(Ci, Cj)

donde:

Aij es un elemento de la matriz de adyacencia del grafo (1 si hay una arista entre el
nodo i y el nodo j, 0 en caso contrario).

ki es el grado (número de conexiones) del nodo i.

m = 1
2

∑
i ki es el número total de aristas en el grafo.

Ci es la comunidad a la que pertenece el nodo i.

δ(Ci, Cj) es la función delta de Kronecker, que es 1 si Ci = Cj (es decir, si los nodos
i y j están en la misma comunidad) y 0 en caso contrario.

El término kikj
2m representa la probabilidad esperada de que exista una arista entre los

nodos i y j en un grafo aleatorio con la misma distribución de grados (modelo nulo de
configuración). Muchos algoritmos de detección de comunidades buscan maximizar esta
métrica Q.

Algoritmos destacados: Louvain y Leiden

Entre la vasta gama de algoritmos de detección de comunidades, dos métodos heurís-
ticos basados en la optimización de la modularidad han ganado gran popularidad debido
a su eficiencia y efectividad en grafos grandes:

Algoritmo de Louvain: Propuesto por Blondel et al. [5], el método de Louvain es un
algoritmo aglomerativo y jerárquico que opera en dos fases iterativas:

1. Optimización local de la modularidad: Para cada nodo, se considera mo-
verlo a cada una de las comunidades de sus nodos vecinos. El nodo se asigna
a la comunidad que resulta en el mayor incremento positivo de la modularidad



24 2. Marco Teórico

global. Esta fase se repite para todos los nodos hasta que no se puedan realizar
más movimientos que mejoren la modularidad.

2. Agregación de la red: Se construye un nuevo grafo donde cada comunidad
identificada en la fase anterior se convierte en un único supernodo. Las aristas
entre los nuevos supernodos se ponderan según la suma de las aristas entre los
nodos de las comunidades correspondientes.

Estas dos fases se repiten hasta que la modularidad ya no puede incrementarse sig-
nificativamente. La eficiencia y simplicidad del método de Louvain lo han convertido
en un estándar de facto para el análisis de comunidades en redes grandes.

Algoritmo de Leiden: Introducido por Traag et al. [72] como una mejora significati-
va sobre el algoritmo de Louvain, el método de Leiden fue diseñado para abordar
algunas de las limitaciones teóricas y prácticas de su predecesor, resultando en par-
ticiones comunitarias de mayor calidad y más robustas. Si bien Leiden también es
un algoritmo aglomerativo jerárquico que busca optimizar la modularidad, introduce
modificaciones cruciales en sus fases operativas:

1. Movimiento local de nodos: Similar a Louvain, los nodos se mueven inicial-
mente a comunidades vecinas si tal movimiento incrementa la modularidad. Sin
embargo, Leiden pone más énfasis en explorar el vecindario de cada nodo de
manera más exhaustiva.

2. Refinamiento de la partición (fase clave de mejora): Esta es una de las
innovaciones principales. Después de una fase inicial de movimiento de nodos,
Leiden toma cada comunidad formada y intenta subdividirla recursivamente.
El algoritmo intenta refinar cada comunidad individualmente, buscando subes-
tructuras que puedan ser comunidades por sí mismas. Solo si una comunidad
no puede ser dividida de forma que se incremente la modularidad, se considera
una unidad cohesiva. Este paso ayuda a evitar que los nodos queden ”atrapados”
en comunidades grandes pero poco densas, un problema que a veces afecta a
Louvain.

3. Agregación de la red basada en particiones refinadas: Una vez que las
comunidades han sido refinadas (y posiblemente divididas), la red se agrega.
Los nodos se agrupan en estas comunidades refinadas, y solo aquellas comuni-
dades que no pudieron ser descompuestas más (es decir, son bien cohesivas) se
consideran para la siguiente iteración de agregación de la red.

Ambos algoritmos son altamente eficientes y escalables, lo que permite su aplicación a
grafos con millones de nodos y aristas, como los que pueden derivarse de grandes corpus
textuales.

2.5. Trabajos relacionados a la tesis

En esta sección, se analizan con mayor detalle los trabajos previos que guardan una
relación más cercana con las problemáticas abordadas y las soluciones propuestas en esta
tesis. Se busca establecer un diálogo con el estado del arte, identificando tanto las inspira-
ciones como los puntos de divergencia que definen la originalidad y el aporte de KRAQ y
sus aplicaciones.
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2.5.1. Trabajos similares en generación de preguntas

Si bien la generación automática de preguntas (QG) es un campo amplio, varios traba-
jos recientes se alinean con los objetivos y/o metodologías de esta tesis, particularmente
aquellos que utilizan representaciones estructuradas del conocimiento o buscan generar pre-
guntas representativas de un corpus. A continuación, analizamos dos trabajos relevantes
que abordan la QG desde perspectivas metodológicamente afines: SG-CQG [16] y Savaal
[54].

SG-CQG: generación de preguntas conversacionales sin respuesta conocida Do
et al. [16] presentan SG-CQG, un framework para la generación de preguntas conversacio-
nales (CQG) en un escenario answer-unaware. Su método se desarrolla en dos etapas:

1. Selección del Contenido a Preguntar (what-to-ask): Se construye un grafo
semántico local a partir de un documento para identificar y seleccionar una oración
pertinente, denominada racional, como base para la pregunta.

2. Formulación de la Pregunta (how-to-ask): Con el racional seleccionado, se
utiliza un clasificador para determinar el tipo de pregunta y luego modelos T5 generan
la pregunta final, asegurando la coherencia conversacional.

Diferencias procedimentales con KRAQ: A pesar de la inspiración compartida en el
uso de grafos, los procedimientos divergen. SG-CQG opera sobre un grafo de un documento
individual para seleccionar una oración específica. KRAQ (como veremos en el Capitulo
2, en cambio, construye un grafo global del corpus para identificar comunidades temáti-
cas enteras, generando preguntas a partir de resúmenes de estas, lo que representa una
abstracción de mayor nivel.

Savaal: generación escalable de preguntas orientadas a conceptos Noorbakhsh
et al. [54] proponen Savaal, un sistema de QG escalable para material educativo. Su pipeline
consiste en:

1. Identificación de conceptos clave: Se extraen y clasifican ideas centrales del
corpus mediante un proceso distribuido.

2. Recuperación de evidencia contextual: Para cada concepto, se recuperan pasa-
jes textuales relevantes con un retriever denso.

3. Generación de preguntas pedagógicas: Un LLM genera preguntas a partir de
los conceptos y los pasajes recuperados para evaluar la comprensión.

Diferencias procedimentales con KRAQ: Si bien ambos buscan generar preguntas a
partir de unidades temáticas, los métodos difieren. Savaal identifica conceptos clave sin
depender de un grafo global ni de clustering. KRAQ, por el contrario, define sus unidades
temáticas a través de la detección de comunidades en el grafo de conocimiento del corpus.
Además, KRAQ genera preguntas a partir de un resumen cohesivo de la comunidad, un
nivel de agregación superior al de Savaal, que combina un concepto aislado con pasajes de
texto.

Posicionamiento de KRAQ Los trabajos de SG-CQG y Savaal ilustran el potencial
de usar abstracciones semánticas para guiar la QG. KRAQ se distingue por su pipeline
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integral que parte de un grafo de conocimiento global. La identificación de comunidades,
la síntesis de resúmenes y la posterior generación de preguntas con un LLM fine-tuneado
constituyen un flujo metodológico específico. La principal novedad de KRAQ es cómo este
conjunto de preguntas se convierte en un activo para optimizar sistemas RAG (Combined
Retrieve RAG y Efficient Speculative RAG), un diferenciador clave de esta tesis.

2.5.2. Trabajos similares en RAG

Para incrementar la robustez y la cobertura semántica en la fase de recuperación, una
línea de investigación significativa se ha centrado en el uso de múltiples formulaciones de la
consulta original. Al diversificar las búsquedas, se busca construir un contexto documental
más completo. A continuación, se revisan trabajos clave en esta línea.

RAG-Fusion Propuesto por Rackauckas [63], este enfoque sigue los siguientes pasos:

1. Se generan automáticamente diversas reformulaciones de la pregunta original del
usuario utilizando un LLM.

2. Cada reformulación se emplea para realizar una búsqueda independiente en el corpus
documental.

3. Los conjuntos de documentos recuperados se consolidan y se reordenan mediante
Reciprocal Rank Fusion (RRF) para destacar la evidencia más robusta.

Diferencias procedimentales con Combined Retrieve RAG: La principal diferen-
cia radica en el origen y la naturaleza de las consultas adicionales. RAG-Fusion genera
reformulaciones de la pregunta del usuario en tiempo real (online), lo que incrementa la
latencia. Combined Retrieve RAG, en cambio, utiliza un conjunto de preguntas represen-
tativas de KRAQ que han sido pre-generadas offline, lo que optimiza la eficiencia al evitar
la generación de consultas en tiempo de ejecución.

DMQR-RAG Presentado por Li et al. [41], este método busca aprovechar múltiples con-
sultas de la siguiente manera:

1. Se aplica un conjunto controlado de transformaciones semánticas (generalización,
especificación, etc.) sobre la consulta original para inducir diversidad.

2. Las variantes más prometedoras son seleccionadas de forma adaptativa.

3. Estas variantes se emplean en las etapas de recuperación y generación.

Diferencias procedimentales con Combined Retrieve RAG: Mientras DMQR-RAG
aplica un conjunto de transformaciones genéricas predefinidas a la pregunta del usuario,
Combined Retrieve RAG utiliza consultas que se derivan de la estructura semántica in-
trínseca del corpus. Las preguntas de KRAQ no son simples reformulaciones, sino repre-
sentaciones de los temas centrales del corpus, aspirando a una cobertura temática más
significativa.

Posicionamiento de Combined Retrieve RAG (contribución de esta tesis) El
método Combined Retrieve RAG, detallado en la Sección 4.1, se inspira en la idea cen-
tral de estos enfoques de múltiples consultas, pero se diferencia fundamentalmente en su
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estrategia. En lugar de generar reformulaciones en línea (como RAG-Fusion) o aplicar
transformaciones genéricas (como DMQR-RAG), nuestra propuesta utiliza un conjunto de
preguntas representativas QK generadas por el sistema KRAQ (ver Capítulo 3). Estas pre-
guntas, al derivarse de la estructura semántica profunda del corpus, ofrecen una diversidad
semántica controlada y temáticamente alineada. Se busca así un balance entre la diversi-
ficación contextual y la eficiencia computacional, proporcionando una cobertura temática
más significativa que las alternativas puramente sintácticas o genéricas.



3. KRAQ

Como se introdujo en el Capítulo 2, y para abordar las limitaciones discutidas en
la Introducción (Capítulo 1), esta tesis propone KRAQ (Knowledge-graph Representative
Automatic Questions). Este capítulo detalla la metodología detrás de KRAQ, un sistema
diseñado para construir un conjunto de preguntas semánticamente representativas a partir
de un corpus textual, sentando las bases para las optimizaciones de RAG que se explorarán
en capítulos posteriores. Primero, se describirá su arquitectura y componentes metodoló-
gicos, seguido de una presentación exhaustiva de su diseño experimental, implementación
y los resultados obtenidos en la generación de dichas preguntas.

3.1. Metodología de KRAQ

El sistema KRAQ (Knowledge-graph Representative Automatic Questions), núcleo de
esta tesis, introduce una arquitectura novedosa para optimizar los sistemas RAG. La in-
tuición fundamental es que, al modelar la estructura semántica profunda de un corpus y
generar a partir de ella un conjunto de preguntas representativas, podemos anticipar y
alinearnos mejor con las posibles consultas de un usuario. Estas preguntas, extraídas de
la esencia temática del corpus, no solo ofrecen una forma de condensar el conocimiento
documental, sino que actúan como herramientas estratégicas. Específicamente, permiten
enriquecer la diversidad y precisión de la información recuperada y optimizar la eficiencia
computacional de los pipelines RAG, abordando así algunas de sus limitaciones clave.

KRAQ, cuyo pipeline general se ilustra en la Figura 3.1, transforma un corpus do-
cumental en este valioso conjunto de preguntas representativas a través de la siguiente
secuencia de etapas:

1. Extracción de conocimiento: Se procesa el texto para identificar y extraer en-
tidades, relaciones y afirmaciones clave, sentando las bases para una representación
estructurada.

2. Construcción del grafo de conocimiento: La información extraída pasa por un
proceso de desambiguación y se integra en un grafo, donde las entidades son nodos
y las relaciones aristas, capturando las conexiones del corpus.

3. Detección de comunidades semánticas: Sobre este grafo, se aplican algoritmos
de clustering (Leiden) para identificar comunidades de nodos densamente conectados,
que representan agrupaciones temáticas coherentes.

4. Síntesis de resúmenes comunitarios: Para cada comunidad detectada, se genera
un resumen textual que condensa su contenido temático principal.

5. Generación de preguntas representativas: Finalmente, estos resúmenes comuni-
tarios se utilizan como entrada para un modelo de lenguaje fine-tuneado, que produce
una pregunta representativa para cada comunidad.

28
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Fig. 3.1: Diagrama del pipeline metodológico de KRAQ: desde el corpus de documentos hasta la
generación de preguntas representativas por comunidad.

Es fundamental destacar que las primeras cuatro etapas de este pipeline (desde la
extracción de conocimiento (1ra) hasta la síntesis de resúmenes comunitarios (4ta)) se
implementan utilizando y adaptando el robusto framework GraphRAG, propuesto por
Edge et al. [19]. La adopción de GraphRAG para estos pasos iniciales nos proporciona
una base metodológica sólida, reproducible y validada para la construcción del grafo de
conocimiento, la identificación de comunidades y la generación de sus correspondientes
resúmenes textuales.

La contribución central y novedosa de esta tesis, y por ende el núcleo dis-
tintivo de KRAQ, reside en la quinta y última etapa: la generación de un conjunto
de preguntas representativas a partir de dichos resúmenes comunitarios. Esta transforma-
ción de resúmenes en preguntas se realiza mediante un modelo de lenguaje específicamente
fine-tuneado para esta tarea. Mientras GraphRAG utiliza sus resúmenes para responder
directamente a consultas externas, KRAQ va un paso más allá al convertir estos resúmenes
en un nuevo activo que como se demostrara posteriormente, puede ser utilizado para la
optimización de sistemas RAG.

En las siguientes secciones, se detallará cada uno de los componentes y procesos que con-
forman el sistema KRAQ. Para ilustrar de manera concreta cómo opera KRAQ, seguiremos
un ejemplo temático centrado en el ecosistema de la educación superior y la investigación
en Argentina, cuyas entidades principales son la Universidad de Buenos Aires (UBA) y el
Premio Nobel.

3.1.1. Extracción de entidades y relaciones con GraphRAG

La primera etapa del pipeline, llevada a cabo mediante el framework GraphRAG, con-
siste en convertir un corpus documental en una representación semántica estructurada
mediante la extracción de entidades, relaciones y afirmaciones relevantes. Esta representa-



30 3. KRAQ

ción constituye la base para la posterior construcción del grafo de conocimiento.
El proceso, tal como lo implementa GraphRAG, inicia con la fragmentación del cor-

pus en segmentos de longitud fija, denominados chunks. Esta división busca asegurar una
cobertura contextual adecuada y, al mismo tiempo, respetar las restricciones inherentes al
tamaño de contexto de los LLMs [37, 45]. Cada uno de estos chunks es tratado como una
unidad semántica fundamental de la cual se extraerá conocimiento estructurado.

Sobre cada chunk, GraphRAG aplica un LLM mediante el uso de prompts específica-
mente diseñados para la detección y caracterización de tres tipos principales de elementos
semánticos:

Entidades: Se identifican junto con su nombre, su tipología (e.g., persona, orga-
nización, lugar) y una descripción concisa de sus atributos y actividades relevantes
dentro del contexto del fragmento.

Relaciones: Se detectan las conexiones significativas entre pares de entidades pre-
viamente identificadas. Estas relaciones se representan formalmente como triplas
dirigidas (entidad origen, tipo de relación, entidad destino), acompañadas de una
descripción textual que explica la naturaleza del vínculo.

Afirmaciones (claims): Se extraen proposiciones fácticas que condensan hechos,
eventos o condiciones notables mencionados en el texto y asociados a las entidades o
sus relaciones.

La utilización de LLMs para esta tarea ha demostrado ser una aproximación eficiente [90].
Los prompts exactos empleados por GraphRAG se detallan en el apéndice de su publicación
original [19].

Texto Original del Chunk
“La Universidad de Buenos Aires (UBA), fundada en 1821, es una de las instituciones educativas
más prestigiosas de América Latina. Varios premios Nobel han sido egresados de esta universidad
pública argentina.”
Tipo de Elemento Información Extraída
Entidades

Nombre: Universidad de Buenos Aires
Tipo: Institución Educativa
Descripción: Universidad pública argentina.
Nombre: Premio Nobel
Tipo: Distinción
Descripción: Galardón que ha sido recibido por egresados de la UBA.

Relaciones
Cabeza (Head): Universidad de Buenos Aires
Cola (Tail): Premio Nobel
Relación: ha formado egresados que han recibido

Afirmaciones (Claims)
• La Universidad de Buenos Aires (UBA) fue fundada en 1821.
• La UBA es una de las instituciones educativas más prestigiosas de
América Latina.
• Egresados de la UBA han recibido premios Nobel.
• La UBA es una universidad pública argentina.

Fig. 3.2: Ejemplo ilustrativo de la extracción de información semántica a partir de un chunk sobre
la UBA y Premios Nobel, tal como la realizaría GraphRAG. Se identifican entidades clave,
sus relaciones y afirmaciones.
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Continuando con nuestro ejemplo conductor, la Figura 3.2 muestra cómo, a partir de
un chunk que menciona a la ”Universidad de Buenos Aires (UBA)” y los ”Premios Nobel”,
GraphRAG extraería las entidades correspondientes, sus tipos, descripciones, la relación
”ha formado egresados que han recibido”, y varias afirmaciones relevantes. Dicho formato
de salida captura la información semántica clave que establece las bases para la siguiente
etapa.

Reflexión iterativa para la mejora de cobertura en GraphRAG. Es común que en
la extracción inicial de entidades, ciertos elementos menos evidentes sean omitidos. Para
mitigar esto, GraphRAG emplea una técnica de self-reflection [48]. Una vez realizada la
extracción, la salida se reenvía al LLM, solicitándole que identifique y justifique elementos
relevantes omitidos, mediante prompts como:

“¿Qué entidades o relaciones relevantes no fueron extraídas previamente? Jus-
tifique su relevancia.”

Este ciclo puede repetirse. Para un análisis detallado de esta técnica en GraphRAG, con-
súltese [19], Apéndice A.2.

3.1.2. Construcción del grafo de conocimiento con GraphRAG

Una vez extraídas las entidades, relaciones y afirmaciones desde los chunks de texto, el
siguiente paso, también gestionado por GraphRAG, consiste en integrar esta información
en un grafo de conocimiento. Este grafo, que para KRAQ es fundamental, servirá de base
para el clustering y la generación de resúmenes.

Abstracción semántica y agregación en GraphRAG La información extraída por
GraphRAG (entidades, relaciones, afirmaciones) puede considerarse una forma de resumen
abstracto del contenido de los chunks [19]. Dado que los documentos se fragmentan, una
misma entidad o relación puede detectarse múltiples veces.

Para construir el grafo, GraphRAG primero realiza un proceso de desambiguación de
entidades (entity disambiguation), crucial para asegurar que cada entidad única corres-
ponda a un único nodo. Esta implementación en GraphRAG utiliza estrategias de normali-
zación y unificación, comenzando con la coincidencia de cadenas (string matching) [12, 20].
Así, para nuestro ejemplo, si ”Universidad de Buenos Aires” y ”UBA” aparecen, GraphRAG
evalúa su unificación bajo un solo nodo si su similitud léxica o semántica (potencialmente
verificada por un LLM o reglas heurísticas) supera cierto umbral.

Luego, GraphRAG agrega y combina las descripciones asociadas a cada entidad desam-
biguada. Retomando el ejemplo, las diversas menciones descriptivas de la ”Universidad de
Buenos Aires” se consolidan en una descripción concisa para el nodo UBA. Las relaciones
extraídas se convierten en aristas dirigidas, y sus descripciones se agregan para enriquecer
semánticamente el grafo. La Figura 3.3 ilustra cómo las entidades y la relación de nues-
tro ejemplo (”UBA ha formado egresados que han recibido Premio Nobel”) se representan
gráficamente.

Finalmente, las afirmaciones relevantes (claims) extraídas por GraphRAG, como “la
UBA fue fundada en 1821”, se asocian a los nodos o aristas correspondientes del grafo,
sirviendo como anotaciones para la posterior generación de resúmenes.
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Fig. 3.3: Ilustración del grafo de conocimiento simplificado para el ejemplo de la Universidad de
Buenos Aires y el Premio Nobel, mostrando las entidades extraídas (detalladas en la
Figura 3.2) y la relación que las vincula, como lo construiría GraphRAG.

Representación final

El resultado de este proceso es un grafo dirigido G = (V,E), donde:

Cada nodo v ∈ V representa una entidad única, acompañada por su descripción.

Cada arista e = (vi, vj) ∈ E representa una relación dirigida entre dos entidades.

Las afirmaciones extraídas se almacenan como propiedades adicionales, útiles para
tareas posteriores de resumen.

3.1.3. Detección de comunidades en el grafo de GraphRAG

Una vez construido el grafo de conocimiento por GraphRAG, el siguiente paso en su
pipeline (y crucial para KRAQ) es la identificación de comunidades semánticas. Estas son
subconjuntos de entidades (nodos) fuertemente conectadas entre sí que comparten una
temática o dominio común, permitiendo organizar el contenido en regiones cohesivas.

Desde el punto de vista teórico, los grafos de conocimiento a menudo exhiben propie-
dades de redes de mundo pequeño (small-world networks) [79], con alto coeficiente de
clustering, lo que favorece la emergencia de estructuras comunitarias. La calidad de estas
estructuras puede medirse con la modularidad (ver Sección 2.4.2) [52]. Estas agrupaciones,
o comunidades, representan conjuntos de nodos con alta densidad de conexiones internas
y baja conectividad externa, interpretables como focos temáticos.

Para realizar esta partición comunitaria, GraphRAG emplea el algoritmo Leiden [72].
Como se detalló en la Sección 2.4.2, Leiden optimiza la modularidad y garantiza comuni-
dades con fuerte conectividad interna. GraphRAG aplica Leiden de forma jerárquica para
descubrir la estructura comunitaria a múltiples niveles:

1. Detección de comunidades de nivel superior (Nivel 0): Leiden se ejecuta sobre
el grafo completo.

2. Subdivisión recursiva: Cada comunidad se trata como un subgrafo y Leiden se
aplica nuevamente para subdividirla.

3. Criterio de detención: La recursión se detiene al alcanzar comunidades ”hoja” (no
divisibles sin pérdida de cohesión/modularidad) o un nivel de profundidad predefini-
do.

Para una descripción detallada del algoritmo Leiden, ver Sección 2.4.2.
Esta estructura jerárquica es valiosa, ya que cada nivel proporciona una partición

exhaustiva y mutuamente excluyente de nodos [19], facilitando un enfoque de ”divide y
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vencerás” para la generación de resúmenes. La Figura 3.4 muestra un ejemplo genérico de
esta detección jerárquica. Aplicado a nuestro ejemplo conductor, la ”UBA” y el ”Premio
Nobel”, aunque relacionados, podrían asignarse a diferentes comunidades o a la misma en
distintos niveles jerárquicos, según la densidad de sus conexiones con el resto del grafo.

Fig. 3.4: Ejemplo ilustrativo de la detección jerárquica de comunidades de nivel superior (Nivel
0) utilizando el algoritmo Leiden, tal como lo aplicaría GraphRAG. (Adaptado de Edge
et al. [19], Fig. 4, Apéndice B).

En la práctica, este proceso de GraphRAG transforma el grafo global en un conjunto de
particiones jerárquicas. Cada comunidad en un nivel seleccionado se considera una unidad
semántica, base para la posterior generación de resúmenes por parte de GraphRAG, y
luego de preguntas por parte de KRAQ.

3.1.4. Generación de resúmenes

Una vez detectadas las comunidades semánticas dentro del grafo de conocimiento,
KRAQ genera un resumen textual por comunidad. Estos resúmenes actúan como con-
densaciones interpretables del contenido temático de cada grupo de entidades, relaciones
y afirmaciones. Son fundamentales para reducir la redundancia en la representación del
conocimiento y habilitar la posterior generación de preguntas representativas.

La motivación principal de esta etapa, tal como la implementa GraphRAG y la apro-
vecha KRAQ, es la de facilitar un resumen textual y escalable del corpus. Mientras que
enfoques tradicionales de resumen (query-focused o extractivos) se enfrentan a límites con-
textuales de los LLMs o a redundancia en los pasajes recuperados, el enfoque de KRAQ
permite resumir por partes coherentes y con semántica local fuerte aprovechando las co-
munidades en el grafo. Siguiendo un enfoque jerárquico, los resúmenes de comunidades
hoja sirven como base para construir resúmenes de niveles superiores, logrando una visión
global por agregación local [19].

Para cada comunidad identificada, se construye un resumen utilizando un LLM, alimen-
tado con información de los nodos (entidades), las aristas (relaciones) y las afirmaciones
asociadas.

El proceso varía ligeramente según el nivel jerárquico de la comunidad:

Comunidades hoja: se priorizan las entidades y relaciones de mayor centralidad
(calculada por grado), y se seleccionan en orden descendente hasta llenar el límite de
tokens de entrada del modelo.
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Comunidades de nivel superior: si los elementos individuales no caben todos
en el contexto del modelo, se reemplazan por los resúmenes ya generados de sus
subcomunidades. De este modo, se logra una agregación bottom-up, donde los niveles
altos reflejan progresivamente una visión más global del corpus.

En ambos casos, se utiliza un prompt de resumen (template prompt, ver 19), que guía
al modelo para que incluya temas clave, relaciones centrales y afirmaciones relevantes.

Para ilustrar cómo GraphRAG genera estos resúmenes, consideremos que, para nuestro
ejemplo conductor, se ha identificado una comunidad semántica que agrupa a la ”Univer-
sidad de Buenos Aires” con entidades relacionadas a su prestigio y los ”Premios Nobel”
obtenidos por sus egresados. La Figura 3.5 detalla cómo, a partir de descripciones de no-
dos y afirmaciones pertinentes a esta comunidad UBA-Nobel, GraphRAG sintetizaría un
resumen.

Ejemplo: Generación de Resumen para la Comunidad UBA-Premio Nobel
Componentes de la Comunidad Información de Input al LLM (GraphRAG)
Nodos Clave
Entidad: “Universidad de Buenos Aires (UBA)”
Descripción del Nodo: “Institución educativa pública argentina, fundada en 1821,

reconocida por su prestigio en América Latina y por la
formación de múltiples personalidades destacadas.”

Entidad: “Premio Nobel”
Descripción del Nodo: “Máximo galardón internacional otorgado anualmente por

contribuciones excepcionales en diversas áreas del conoci-
miento y la paz.”

Relaciones Clave
Tipo de Relación: “egresados_han_recibido”
Descripción de la Relación: “La UBA se destaca porque varios de sus egresados han

sido galardonados con el Premio Nobel a lo largo de su
historia.”

Afirmaciones (Claims)
• “La UBA es una de las universidades más antiguas y prestigiosas de Argentina.”
• “Cinco ciudadanos argentinos han recibido el Premio Nobel, varios de ellos vinculados a la
UBA.”
• “Bernardo Houssay, egresado y profesor de la UBA, fue el primer latinoamericano en recibir
un Premio Nobel en ciencias (Medicina, 1947).”

Resumen de Comunidad Generado (GraphRAG)
“Esta comunidad temática se centra en la Universidad de Buenos Aires (UBA) y su distinguida
conexión con los Premios Nobel. Se resalta el prestigio histórico de la UBA como formadora de
figuras galardonadas con este reconocimiento internacional, subrayando su impacto en el ámbito
académico y científico, como en el caso de Bernardo Houssay.”

Fig. 3.5: Ejemplo ilustrativo de la generación de un resumen por parte de GraphRAG para una
comunidad temática centrada en la UBA y su vinculación con los Premios Nobel. El LLM
sintetiza la información clave en un texto cohesivo.

De esta manera, el proceso implementado por GraphRAG culmina con la obtención de
un resumen textual Ri, como el mostrado en la Figura 3.5, para cada comunidad Ci. Estos
resúmenes Ri son el punto de partida para la etapa de generación de preguntas de KRAQ.

3.1.5. Generación de preguntas con KRAQ

El paso final y distintivo de KRAQ consiste en transformar cada resumen comunitario
Ri (obtenido de GraphRAG) en una pregunta representativa Qi, que capture el núcleo
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temático y conceptual de dicha comunidad.
Dado un conjunto de resúmenes textuales Ri asociados a cada comunidad Ci, la función

generadora de KRAQ es:
Qi = fθ(Ri)

donde fθ es un modelo de lenguaje específicamente fine-tuneado por nosotros con pará-
metros θ. Es crucial destacar que, en esta etapa, KRAQ opera exclusivamente sobre el
resumen textual Ri, ya que se considera que este condensa eficientemente la información
relevante de la comunidad para el propósito de generar una pregunta representativa.

Por ejemplo, tomando el resumen generado para la comunidad UBA-Premio Nobel
(mostrado en la Figura 3.5):

“Esta comunidad temática se centra en la Universidad de Buenos Aires (UBA) y
su distinguida conexión con los Premios Nobel. Se resalta el prestigio histórico
de la UBA como formadora de figuras galardonadas con este reconocimiento
internacional, subrayando su impacto en el ámbito académico y científico, como
en el caso de Bernardo Houssay.”

A partir de este resumen, nuestro modelo fθ de KRAQ podría generar una pregunta re-
presentativa como:

“¿Cómo se relaciona el prestigio de la Universidad de Buenos Aires con los
Premios Nobel obtenidos por sus egresados, y qué ejemplos lo ilustran?”

Esta pregunta ejemplifica el tipo de salida que KRAQ busca producir: una interrogante
natural y temáticamente alineada con el contenido condensado del resumen comunitario.

Entrenamiento del modelo generador

Para construir el modelo fθ, se utiliza un enfoque de fine-tuning, que consiste en ajustar
un modelo preentrenado para que aprenda a generar preguntas significativas a partir de
resúmenes de comunidades. El objetivo es que el modelo pueda transformar de manera
controlada un resumen en una pregunta representativa del contenido.

La construcción del dataset de fine-tuning se inspiró en los pares triples comúnmente
disponibles en datasets de pregunta-respuesta, típicamente de la forma:

(Q,A,E)

donde Q es la pregunta, A la respuesta, y E la evidencia o documento fuente. Sin embargo,
dado que en KRAQ se desea generar preguntas sin depender directamente de una respuesta,
se aplica un procedimiento de transformación del dataset para crear pares de entrenamiento
de la forma (R,Q), donde R es un resumen generado a partir de E y Q, y Q es la pregunta
original.

Este proceso se realiza en dos pasos:

1. Síntesis del resumen (g)
Se utiliza un modelo LLM (e.g., GPT-4o) con ejemplos few-shot para sintetizar un
resumen R a partir del contexto y la pregunta:

R = g(Q,E)
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El modelo recibe como input la evidencia E y la pregunta Q, y se le instruye para
generar un texto que resuma los conceptos centrales de la evidencia, sin hacer refe-
rencia explícita a la pregunta. El resultado es un resumen temático general similar
a los obtenidos de las comunidades, que captura el contenido de la evidencia pero
puede utilizarse de forma autónoma para generar nuevas preguntas.

2. Fine-tuning del generador (f)
Una vez generados los pares (R,Q), se fine-tunea un modelo de lenguaje fθ para
predecir Q dado R. El objetivo de entrenamiento es maximizar la verosimilitud lo-
garítmica del conjunto:

E(R,Q) [logPθ(Q | R)]

Este procedimiento sigue el esquema clásico de modelado de lenguaje condicional y
permite que el modelo aprenda a inferir las posibles preguntas que emergen natural-
mente de un resumen de comunidad.

Para ver los prompts especificos del entrenamiento ir a Sección de Implementacion 3.2.5

La decisión de utilizar resúmenes R, generados por un LLM, como base para el fine-
tuning de nuestro modelo fθ se valida con las conclusiones de Lampinen et al. [38]. Su
investigación valida que el fine-tuning de modelos se beneficia de la aumentación del dataset
con información inferida o sintetizada por LLMs (similar a nuestros resúmenes R), lo que
resulta en un mejor entrenamiento, además de lograr asi trabajar sobre un input ajustado
a nuestro objetivo de generación de preguntas.

Entonces, como resultado final de KRAQ, obtenemos un listado de preguntas repre-
sentativas QK = {QK

1 , QK
2 , . . . , QK

k }, una por cada comunidad detectada en el grafo de
conocimiento (de todos los niveles).

3.2. Experimentación y resultados de KRAQ

Habiendo detallado la arquitectura metodológica de KRAQ en la sección anterior, esta
sección se dedica a la validación empírica de su capacidad para generar preguntas repre-
sentativas. Se describirán los datasets y las decisiones generales de implementación que
sustentan todos los experimentos de esta tesis, para luego enfocarse en el diseño de eva-
luación específico para KRAQ, los detalles de su implementación utilizando GraphRAG,
el proceso de fine-tuning del modelo generador de preguntas, y finalmente, se presentarán
y analizarán los resultados obtenidos.

3.2.1. Datasets

La validación empírica de las metodologías propuestas en esta tesis se llevó a cabo
utilizando un conjunto de cuatro benchmarks estándar, ampliamente reconocidos en la
comunidad de investigación de procesamiento del lenguaje natural. Cada uno de estos
datasets presenta características y desafíos particulares, lo que permite evaluar el rendi-
miento de los sistemas en diversos escenarios. A continuación, se describe cada dataset y
sus particularidades.
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TriviaQA

TriviaQA [33] es un dataset de pregunta-respuesta (QA) de dominio abierto donde
las preguntas fueron redactadas por anotadores humanos de forma independiente a los
documentos de evidencia, basándose en trivias preexistentes. Las evidencias provienen de
diversas fuentes web y artículos de Wikipedia.

Estructura de instancia. Cada instancia en TriviaQA se modela como una tripleta
(Q,A,E):

Q: Una pregunta en lenguaje natural.
A: Una respuesta corta y concisa (e.g., una entidad nombrada, una frase nominal).
E: Un conjunto de documentos o pasajes textuales que contienen la evidencia para
responder a Q.

Ejemplo: TriviaQA

Pregunta (Q): “Who wrote the novel Pride and Prejudice?”

Respuesta (A): “Jane Austen”

Desafíos. La principal particularidad de TriviaQA es el grado de desalineación entre la
pregunta y el contexto evidencial, que puede incluir información distractora o redundante.
Las respuestas no siempre se encuentran explícitamente en una única frase, lo que exige
una robusta capacidad de recuperación y síntesis. Su diversidad temática y la naturalidad
de sus preguntas lo consolidan como un benchmark de referencia para evaluar la robustez
de los sistemas en entornos realistas y potencialmente ruidosos.

HotPotQA

HotPotQA [84] es un dataset diseñado específicamente para evaluar la capacidad de
razonamiento multihop, que implica responder preguntas que requieren la combinación e
integración de información proveniente de múltiples pasajes de texto.

Estructura de instancia. Cada instancia en HotPotQA se presenta como una tripleta
(Q,A,E):

Q: Una pregunta escrita por humanos, recolectada a través de tareas de crowdsour-
cing, y diseñada explícitamente para requerir múltiples saltos inferenciales.
A: Una respuesta puntual y concisa, típicamente un nombre propio, una fecha, o
alguna otra entidad nombrada.
E: Generalmente contiene dos o más artículos de Wikipedia (o fragmentos de ellos)
que, en conjunto, incluyen la información necesaria para derivar la respuesta A.

Tipos de Razonamiento Multihop. HotPotQA se distingue por la inclusión de dos
tipos principales de preguntas que exigen un razonamiento multihop:
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Ejemplo: Pregunta Puente (Bridge Question)

Este tipo de preguntas requiere que el sistema identifique una entidad o concepto
en un fragmento de evidencia y luego utilice esa información como ”puente” para
encontrar la respuesta final en otro fragmento.

Pregunta (Q): “What is the birth year of the author of The Selfish Gene?”
Respuesta (A): “1941”
Razonamiento Implicado:

1. Salto 1 (Identificación): Identificar que el autor de ”The Selfish
Gene” es Richard Dawkins.

2. Salto 2 (Búsqueda con Puente): Usar ”Richard Dawkins” para bus-
car y encontrar su año de nacimiento.

Ejemplo: Pregunta Comparativa (Comparative Question)

Estas preguntas requieren la recuperación de atributos para dos o más entidades, a
menudo de diferentes fragmentos de evidencia, y luego la realización de una compa-
ración directa para determinar la respuesta.

Pregunta (Q): “Which city has a larger population: Milan or Turin?”
Respuesta (A): “Milan”
Razonamiento Implicado:

1. Recuperación Entidad 1: Encontrar la población de Milán.

2. Recuperación Entidad 2: Encontrar la población de Turín.

3. Comparación: Comparar ambos valores y determinar el mayor.

Desafíos. A diferencia de otros conjuntos de datos de QA donde las respuestas suelen en-
contrarse mediante búsquedas superficiales o patrones léxicos directos, HotPotQA presenta
un desafío más complejo que requiere una lectura estructurada y razonamientos inferencia-
les encadenados. Esta complejidad lo posiciona como un benchmark exigente para evaluar
modelos que combinan la recuperación de información con la generación de lenguaje natu-
ral.

BioASQ

BioASQ [74] es un benchmark de referencia para QA en el dominio biomédico, desa-
rrollado en el contexto del BioASQ Challenge y utilizando literatura médica de PubMed.
Estructura de instancia. Cada instancia en BioASQ está compuesta por una tripleta
(Q,A,E):

Q: Una pregunta formulada por expertos (médicos, biólogos) sobre temas biomédicos.
A: Una respuesta de referencia, típicamente presentada como una lista de entidades
(e.g., genes, medicamentos, procedimientos) o sinónimos que responden directamente
a la pregunta. Por ejemplo, para una pregunta sobre tratamientos, la respuesta podría
ser una lista de fármacos específicos.
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E: Un conjunto de abstracts científicos de PubMed que contienen la evidencia para
responder a Q.

Ejemplo: BioASQ

Pregunta (Q): “¿Qué medicamentos se utilizan en el tratamiento de la enfermedad
de Crohn?”

Respuesta de Referencia (A): Una lista como: [infliximab, adalimumab, vedolizu-
mab, ustekinumab, corticosteroides, metotrexato, azatioprina].

Desafíos. Muchas preguntas en BioASQ requieren la integración de información de múlti-
ples documentos. El lenguaje técnico y la terminología especializada del dominio biomédico
representan un desafío considerable para la comprensión y la síntesis semántica. El formato
de las respuestas de referencia, al consistir en listas de entidades o términos, si bien busca
la factualidad, presentará ciertas complicaciones para la evaluación mediante métricas de
coincidencia exacta, como se detallará y abordará en secciones posteriores al analizar los
resultados específicos para este dataset.

PubHealth

PubHealth [36] es un dataset diseñado para la verificación automática de hechos (fact-
checking) en el dominio de la salud pública, utilizando evidencia de fuentes confiables como
PubMed.
Estructura de instancia. Cada instancia en PubHealth se presenta como una tripleta
(Q,A,E):

Q: Una afirmación factual (un claim) en lenguaje natural.
A: Una etiqueta de veracidad: true, false, o mixture.
E: Fragmentos de texto de fuentes autorizadas que justifican la etiqueta de veracidad.

Ejemplo: PubHealth

Afirmación (Q): “Beber agua con limón alcaliniza el cuerpo.”

Etiqueta (A): false.

Desafíos. PubHealth evalúa la capacidad de los modelos para determinar la veracidad
de afirmaciones y justificarla. Requiere la síntesis de evidencia dispersa, especialmente
para la categoría mixture. El lenguaje combina terminología técnica con discurso público,
exigiendo una comprensión profunda.

3.2.2. Decisiones generales de implementación

Antes de detallar los experimentos específicos para KRAQ y sus aplicaciones, es perti-
nente describir las decisiones de implementación comunes que se adoptaron para la mayoría
de los componentes y procesos evaluados en esta tesis. Estas elecciones, relativas a modelos
de lenguaje, servidores de inferencia, y herramientas de gestión de datos, proporcionan el
contexto técnico para la reproducibilidad y comprensión de los resultados experimentales
presentados en este y los capítulos siguientes.
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Modelo de lenguaje utilizado

Para la generación de texto a través de modelos de LLM, se utilizó el modelo LLaMA
3.1–8B-Instruct, desarrollado por Meta AI [71]. Este modelo forma parte de la familia de
LLMs LLaMA (Large Language Model Meta AI), y corresponde a una versión optimizada
para tareas de seguimiento de instrucciones (instruct-tuning). Consta de aproximadamen-
te 8 mil millones de parámetros y ha sido preentrenado sobre un corpus multilingüe de
alta calidad, seguido de un fine-tuning para mejorar la utilidad y seguridad en contextos
conversacionales.

La elección de este modelo responde a una necesidad de equilibrio entre capacidad
expresiva, eficiencia computacional y adaptabilidad a recursos de hardware limitados. Es-
tudios recientes han mostrado que modelos de esta escala, cuando están debidamente uti-
lizados, pueden alcanzar un rendimiento comparable al de modelos más grandes en tareas
de pregunta-respuesta, razonamiento y generación de lenguaje controlado [44].

Cuando se tuvo que realizar alguna tarea de fine-tuning, se utilizo a este modelo (LLa-
MA 3.1–8B Instruct) como modelo base.

Servidor de inferencia

Para realizar la inferencia del modelo LLM, se utilizó el servidor vLLM [67], una arqui-
tectura diseñada específicamente para acelerar la inferencia de modelos de lenguaje a gran
escala. vLLM se basa en un enfoque de paged attention, una técnica que permite reutilizar
eficientemente los key-values en memoria sin necesidad de recomputarlos en cada paso de
generación. Esto resulta fundamental para tareas de generación paralela, donde múltiples
entradas deben procesarse de forma simultánea, como es el caso de la indexación de chunks
y resúmenes en el pipeline de GraphRAG.

Una de las ventajas clave de vLLM en este proyecto fue su capacidad para manejar
llamadas concurrentes al modelo con mínimos costos de latencia, lo que permitió acelerar
significativamente la generación de resúmenes y preguntas en grandes volúmenes. Además,
al ser compatible con el cliente de OpenAI, resulta idóneo para integrarse con el framework
de GraphRAG, y su interfaz facilita su utilización posterior en el desarrollo.

La elección de vLLM también respondió a la necesidad de optimizar el uso de memoria
VRAM en una GPU limitada (RTX 3090 de 24 GB), maximizando el throughput.

Como servidor de Inferencia para el modelo de embeddings, se utilizo Ollama.

Cuantización del modelo

Para asegurar la viabilidad de ejecutar el modelo LLaMA 3.1–8B Instruct en una GPU
con 24 GB de VRAM (RTX 3090) en el framework de vLLM, se recurrió a un modelo
previamente cuantizado mediante la técnica AWQ (Activation-aware Weight Quantization)
a 4 bits, descargado desde de Hugging Face (hugging-quants/Meta-Llama-3.1-8B-Instruct-
AWQ-INT4). Esta técnica permite reducir significativamente el tamaño del modelo y su
requerimiento de memoria sin afectar de forma sustancial la calidad de las respuestas
generadas.

AWQ se basa en una estrategia de cuantización post-entrenamiento que preserva las
activaciones más relevantes del modelo al momento de decidir los rangos de cuantización,
lo que mejora la estabilidad y el rendimiento frente a métodos de cuantización más simples
como la cuantización uniforme a int8 [43]. Al centrarse en preservar la distribución de
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activaciones críticas, AWQ logra mantener la fidelidad del modelo incluso bajo formatos
de 4 bits, permitiendo un uso más eficiente de la memoria y mayor throughput de inferencia.

Una de las ventajas clave de esta elección fue su compatibilidad nativa con el servi-
dor vLLM, que ofrece soporte completo para modelos AWQ. Esto evitó la necesidad de
conversiones adicionales o ajustes manuales en el pipeline de inferencia, facilitando una
integración fluida y eficiente del modelo cuantizado en todo el sistema de generación.

Generador de embeddings

Para la representación vectorial de los textos en el pipeline de GraphRAG, tanto en
la etapa de indexación como en la comparación semántica de preguntas y recuperacion de
documentos, se utilizó el modelo nomic-embed-text, desarrollado por Nomic AI [26]. Este
modelo fue seleccionado por su excelente rendimiento en tareas de recuperación semántica,
evaluado en benchmarks estándar como MTEB (Massive Text Embedding Benchmark) [51],
donde se posiciona como uno de los mejores modelos open-source de generación de embed-
dings para textos en inglés.

El modelo nomic-embed-text fue entrenado específicamente para capturar similitudes
semánticas a nivel de documento y frase, lo que lo hace especialmente adecuado para tareas
de retrieval. Su arquitectura se basa en una variante optimizada del encoder BERT-like
con pooling por token [CLS], y es capaz de proyectar entradas de texto de longitud variable
en un espacio vectorial denso y consistente, de manera eficiente y estable.

Base de datos vectorial

Para el almacenamiento y la recuperación eficiente de embeddings generados durante
el pipeline de KRAQ, se utilizó Qdrant, un motor de búsqueda vectorial optimizado pa-
ra consultas por similitud semántica. Qdrant permite realizar búsquedas aproximadas en
espacios vectoriales de alta dimensión mediante algoritmos eficientes como HNSW (Hierar-
chical Navigable Small World), y soporta operaciones complejas como filtrado condicional
y metadatos adjuntos a los vectores [28]. Esto lo convierte en una herramienta ideal pa-
ra sistemas RAG donde se requiere recuperar documentos relevantes a partir de queries
embebidas.

En el contexto de esta tesis, se desplegó una instancia local de Qdrant para garantizar
control total sobre la persistencia de los vectores, optimizar el rendimiento en entornos con
recursos limitados, y evitar dependencias externas. La base de datos almacenó tanto los
embeddings de los chunks documentales como los embeddings de las preguntas generadas,
permitiendo realizar comparaciones semánticas durante la evaluación.

Tamaños de datasets

Para la realización de los experimentos descritos en esta tesis, se procedió a un ajuste
en el tamaño de los datasets empleados. Específicamente, los corpus originales fueron sub-
muestreados de manera que, tras el proceso de fragmentación (chunking) implementado
en el pipeline de GraphRAG, se obtuviera un volumen de aproximadamente 15,000 chunks
por dataset. Cada uno de estos chunks fue configurado para tener una longitud máxima
de 300 tokens.

Esta reducción controlada del tamaño de los datos fue una consideración pragmática,
impuesta por las limitaciones temporales y los recursos computacionales disponibles en el
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marco de esta tesis de licenciatura. El objetivo principal de este ajuste fue asegurar la
viabilidad de ejecutar la totalidad de los experimentos y las correspondientes evaluaciones
en un plazo razonable, permitiendo así una exploración exhaustiva de las metodologías
propuestas.

Por lo tanto, el tamaño final del conjunto de preguntas seleccionadas para cada dataset
se definió de modo que la totalidad de los documentos de evidencia asociados sumaran
aproximadamente 5.000.000 de tokens por corpus. El número de preguntas de referencia
utilizadas para esta evaluación de KRAQ fue:

TriviaQA: 300 preguntas de referencia.

HotPotQA: 2000 preguntas de referencia.

BioASQ: 1000 preguntas de referencia.

PubHealth: 2400 preguntas de referencia (afirmaciones).

El número de preguntas utilizadas para la evaluación de los sistemas RAG (Combined
Retrieve RAG y Efficient Speculative RAG) varía y se especificará en las secciones corres-
pondientes a cada uno, reflejando también las limitaciones temporales para la ejecución de
dichos experimentos.

3.2.3. Diseño de evaluación para KRAQ

La evaluación de la calidad de las preguntas generadas por KRAQ se centra en su
capacidad para representar semánticamente las posibles consultas que un usuario podría
formular sobre un corpus. Para cuantificar esto, se adoptó un enfoque basado en métri-
cas de similitud semántica, ya que las métricas tradicionales basadas en N-gramas (como
BLEU o ROUGE) presentan limitaciones importantes en el contexto de QG. Estas últimas
penalizan formulaciones sintáctica o léxicamente diferentes pero semánticamente correctas
y relevantes, lo que a menudo resulta en una baja correlación con la evaluación humana
en tareas donde la creatividad y la variación son deseables [25].

En esta tesis, optamos por BERTScore [88], una métrica que utiliza embeddings con-
textuales para calcular la similitud semántica entre la pregunta generada y una de referen-
cia, superando las limitaciones de la simple coincidencia léxica. Específicamente, se utiliza
el F1 de BERTScore, que combina precisión y recall. Este enfoque permite cuantificar la
relevancia y la cobertura semántica de las preguntas de KRAQ en relación con un conjunto
de preguntas de referencia existentes en datasets estándar, sin exigir una correspondencia
léxica exacta.

Es crucial destacar una distinción metodológica fundamental de KRAQ respecto a mu-
chos trabajos previos en QG. Un número considerable de sistemas de QG evaluados con
métricas tradicionales operan bajo un paradigma answer-aware, incorporando la respues-
ta objetivo A como entrada para generar la pregunta Q (Ecuación 2.3). En contraste,
KRAQ adopta un paradigma answer-unaware, operando únicamente a partir del corpus X
sin requerir respuestas predefinidas. Esta elección deliberada responde a la necesidad de
aplicabilidad en escenarios realistas donde no siempre se dispone de pares (pregunta, res-
puesta) exhaustivos. Por ello, métricas que presuponen un modelo answer-aware son menos
pertinentes para evaluar la contribución central de KRAQ. Nuestro enfoque de evaluación,
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centrado en la cobertura semántica de preguntas relevantes (sin asumir que KRAQ conozca
sus respuestas) y en el impacto funcional en tareas downstream, favorece la valoración de
la flexibilidad y utilidad práctica del sistema.

Adicionalmente, dado que el propósito fundamental del conjunto de preguntas generado
por KRAQ es optimizar los sistemas RAG, los resultados de los experimentos de aplica-
ción (Combined Retrieve RAG y Efficient Speculative RAG, descritos en las Secciones 4.2
y 5.2.7) funcionan como una métrica indirecta de la utilidad de KRAQ. Una generación
de preguntas efectiva por parte de KRAQ debería traducirse en mejoras observables en la
precisión o eficiencia de dichos sistemas RAG (como se analiza en la Sección 5.2.9).

Para llevar a cabo esta evaluación, se utilizaron los datasets estándar previamente
descritos (Sección 3.2.1), donde cada instancia provee una tripleta (Q,A,E). En esta es-
tructura, Q es un conjunto de preguntas de referencia formuladas por humanos, A sus
correspondientes respuestas correctas, y E la colección de documentos o evidencia textual
que conforma el corpus del dataset y sobre la cual opera KRAQ. El protocolo de evaluación
de KRAQ, diseñado para medir su capacidad de cubrir semánticamente estas preguntas
Q, se desarrolla de la siguiente manera:

1. Inicialmente, el pipeline completo de KRAQ procesa el corpus de evidencia E para ge-
nerar un conjunto de preguntas representativas, denotado comoQK = {QK

1 , Q
K
2 , . . . , Q

K
k }.

Cada pregunta QK
i ∈ QK es generada a partir de una comunidad semántica distinta,

detectada previamente en el grafo de conocimiento construido sobre E.

2. Posteriormente, se establece una correspondencia entre las preguntas generadas QK y
el conjunto de preguntas de referencia del dataset, Q = {Q1, Q2, . . . , QN}. Para cada
pregunta de referencia Qj ∈ Q, se identifica su contraparte generada más similar,
Q∗

j ∈ QK, mediante la maximización de la similitud coseno entre sus respectivas
representaciones vectoriales (embeddings). Formalmente:

Q∗
j = arg max

Qi∈QK
(cos(emb(Qj), emb(Qi))) (3.1)

donde emb(·) es la función que proyecta una pregunta a su embedding, y cos(·) es la
funcion que calcula la similitud coseno entre dos embeddings.

A partir de estos pares (Qj , Q
∗
j ), se procede a evaluar la calidad de la generación utilizando

dos métricas complementarias, ambas fundamentadas en BERTScore.

Métrica 1: Cobertura semántica mediante BERTScore

La primera métrica tiene como objetivo evaluar la fidelidad con la que el contenido
semántico de una pregunta de referencia Qj se encuentra reflejado en su correspondien-
te pregunta generada más similar Q∗

j . Para cada par (Qj , Q
∗
j ), se calcula el BERTScore

(específicamente, la puntuación F1 de BERTScore, que combina precisión y recall):

BERTScore(Qj , Q
∗
j )

El resultado final de esta métrica se obtiene promediando las puntuaciones de BERTScore
sobre todas las N preguntas de referencia del dataset.

Relevance =
1

N

N∑
j=1

BERTScore(Qj , Q
∗
j )
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Esta métrica proporciona una medida de la cercanía semántica global, siendo robusta a
variaciones léxicas o estructurales entre las preguntas comparadas.

Métrica 2: Umbral de relevancia semántica (Relevance@τ)

La segunda métrica propuesta es de naturaleza binaria y busca estimar la utilidad
práctica de las preguntas generadas por KRAQ. Se considera que una pregunta generada
Q∗

j es relevante como sustituto o representante de Qj si el BERTScore entre ellas supera
un umbral predefinido τ (e.g., τ = 0,75). Esta métrica permite cuantificar la proporción de
preguntas generadas por KRAQ que alcanzan un grado aceptable de alineación semántica
con las preguntas de referencia.

La métrica se define como la proporción de pares (Qj , Q
∗
j ) que satisfacen esta condición:

Relevance@τ =
1

N

N∑
j=1

I
[
BERTScore(Qj , Q

∗
j )) ≥ τ

]
donde N es el número total de preguntas de referencia en Q, I[·] es la función indicadora
(que toma valor 1 si la condición entre corchetes es verdadera, y 0 en caso contrario).

La aplicación conjunta de estas dos métricas permite una evaluación eficiente, determi-
nando si las preguntas generadas por KRAQ logran una cobertura semántica completa y
un grado de relevancia suficiente respecto a las preguntas relevantes que pueden formularse
sobre el corpus analizado.

Baseline

Para contextualizar el rendimiento de KRAQ, se implementó un baseline que simula
una estrategia de generación de preguntas más directa, sin el análisis estructural profundo
ni el conocimiento global del corpus que caracteriza a KRAQ. Este enfoque genera pre-
guntas a partir de un número variable de chunks seleccionados aleatoriamente del corpus,
combinados para formar un contexto a partir del cual un modelo de lenguaje formula una
pregunta.

El procedimiento es el siguiente:

1. Se elige un número entero aleatorio m dentro de un rango predefinido [m1,m2]. Este
valor m determinará cuántos chunks se utilizarán para generar la pregunta actual.

2. Se seleccionan m chunks C
(i)
1 , . . . , C

(i)
m de manera uniforme y aleatoria del corpus E.

3. Estos m chunks se concatenan para formar un único contexto C
(i)
input.

4. Se utiliza este contexto C
(i)
input para que un modelo de lenguaje genere una pregunta

Qb
i .

5. El proceso se repite K veces (donde K es el número de preguntas generadas por
KRAQ en el mismo corpus) para construir el conjunto de preguntas del baseline,
denotado como Qb = {Qb

1 , Q
b
2 , . . . , Q

b
K}.
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Algorithm 3 Baseline: Generación de preguntas a partir de un número variable de frag-
mentos aleatorios
Require: Corpus E, rango de número de chunks [m1,m2], número de preguntas K, modelo

LLM LLM
Ensure: Conjunto de preguntas generadas Qb

1: Qb ← ∅
2: for i = 1 to K do
3: m← RandomInt(m1,m2)
4: E(i) ← SampleRandomChunks(E,m)

5: C
(i)
input ← Concatenate(E(i))

6: Qb
i ← LLM(promptQG, C

(i)
input)

7: Qb ← Qb ∪ {Qb
i }

8: return Qb

Ver el prompt para generar las preguntas promptQG en Apéndice 7.3. En la implemen-
tación realizada para esta tesis, se utilizaron los valores m1 = 3 y m2 = 7 para definir el
rango del número de chunks aleatorios a concatenar.

Este baseline, al operar sobre muestras aleatorias locales de tamaño variable, puede
generar preguntas coherentes pero frecuentemente redundantes, sin una estrategia para
cubrir adecuadamente las distintas áreas temáticas del corpus de manera sistemática.

Comparar KRAQ con este baseline permite aislar el valor agregado por el análisis
estructurado inherente a KRAQ, que incluye la construcción del grafo de conocimiento, la
detección de comunidades semánticas y la generación de resúmenes representativos antes
de la formulación de preguntas.

Cabe destacar que muchas líneas base alternativas de tipo Graph-to-Text no son com-
parables directamente, ya que típicamente generan texto a partir de tripletas o subgrafos
condicionados explícitamente por una respuesta conocida. En nuestro caso, el objetivo
es formular preguntas abiertas sin información de respuesta, por lo que esos métodos no
resultan adecuados como punto de comparación directa (Ver Sección 2.3).

3.2.4. Configuración de GraphRAG

Para la construcción del grafo de conocimiento, la ejecución del clustering semántico y
la posterior generación de resúmenes por comunidad, se empleó el framework GraphRAG,
desarrollado por Microsoft [19]. GraphRAG hizo su framework OpenSource lo que facilita
y permite su utilización [49].

La elección de GraphRAG se fundamenta en su capacidad para ejecutar estos procesos
de manera controlada y sistemática. La utilización de este framework establecido contribuye
a la replicabilidad y al rigor científico del método KRAQ propuesto, al tiempo que se
aprovechan las validaciones y el consenso existentes en la comunidad científica en torno
a GraphRAG. Para los propósitos de esta tesis, el framework fue adaptado con el fin de
optimizar tanto el rendimiento computacional como la compatibilidad con los recursos de
hardware disponibles.

La totalidad de los experimentos descritos en este trabajo se llevaron a cabo utilizando
una única unidad de procesamiento gráfico (GPU) NVIDIA GeForce RTX 3090, equipada
con 24 GB de VRAM.
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Parámetros elegidos

Con el objetivo de adaptar la ejecución de GraphRAG a los datasets y recursos men-
cionados, se realizaron ajustes específicos sobre los parámetros base del framework. A
continuación, se detallan las configuraciones más relevantes modificadas.
Configuración de (chunks): La fragmentacion del corpus de entrada se configuró con
los siguientes parámetros:

size: 300 (tokens por chunk).

overlap: 50 (tokens de solapamiento entre chunks consecutivos).

Configuración del modelo del lenguaje en GraphRAG: Para las tareas de extrac-
ción y resumen dentro de GraphRAG, se especificó el siguiente modelo y parámetros de
inferencia:

model: hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4 (refiriéndose al mo-
delo LLaMA 3.1 8B Instruct cuantizado con AWQ, previamente discutido en la Sec-
ción 3.2.2).

concurrent_requests: 15 (número de solicitudes paralelas permitidas al servidor del
modelo, ajustado para maximizar el throughput (tokens generados por segundo) en
la GPU disponible).

Obtención de resúmenes comunitarios desde GraphRAG

Una vez ejecutado el pipeline de GraphRAG sobre un corpus, el framework genera
diversos archivos que contienen el conocimiento estructurado extraído y los análisis reali-
zados sobre el grafo. Para los propósitos de esta tesis, el archivo de principal interés que se
utiliza en etapas posteriores es el archivo denominado community_reports.parquet que
se encuentra en la carpeta output al correr el CLI de GraphRAG.

Este archivo, almacenado en formato Apache Parquet para un manejo eficiente de
datos tabulares, contiene una representación detallada de todas las comunidades semánticas
identificadas por GraphRAG. Para cada comunidad detectada en los diferentes niveles
jerárquicos del grafo, el archivo community_reports.parquet incluye tanto el resumen
textual como una lista de observaciones llamadas findings que destacan hechos o puntos
claves dentro de la información contenida en la comunidad.

Si bien en la presente tesis el sistema KRAQ se enfoca en utilizar los resúmenes textuales
comunitarios como base para la generación de preguntas (ver Sección 3.1.5), la existencia
de estos findings detallados por comunidad abre una vía interesante para trabajos futuros.
Se podría explorar:

Utilizar directamente los findings (o una selección de ellos) como una forma alter-
nativa o complementaria de resumen para la generación de preguntas, lo que podría
llevar a preguntas más granulares o específicas.

Emplear los findings para enriquecer el prompt enviado al modelo generador de pre-
guntas, proporcionando así un contexto adicional más allá del resumen narrativo,
con el objetivo de mejorar la calidad o diversidad de las preguntas generadas.

No obstante, para el alcance actual, el resumen comunitario principal es el objeto funda-
mental que se extrae de GraphRAG para el pipeline de KRAQ.
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Optimización de prompts en graphRAG

El framework GraphRAG ofrece la capacidad de adaptar sus prompts para dominios
específicos, con el fin de mejorar su alineación con las características particulares de un cor-
pus. Esta optimización puede realizarse mediante una funcionalidad integrada que ajusta
los prompts de manera automática llamada PromptTuning. Para evaluar el impacto de
esta funcionalidad en el contexto de la presente tesis, se compararon las dos modalidades
de configuración de prompts:

Modalidad sin Ajuste de Prompts (NoPromptTuning): En esta configuración, se emplea-
ron los prompts predeterminados que provee GraphRAG. Estos prompts están dise-
ñados para funcionar bien en una amplia variedad de un ajuste adicional específico
al dominio.

Modalidad con Ajuste de Prompts (PromptTuning): Esta modalidad explora la capacidad
de GraphRAG para optimizar sus prompts internos. En particular, el sistema parte
del muestreo de un subconjunto de chunks. Luego, se analiza el contenido mediante
un LLM para identificar los tipos de entidades y demas caracteristicas del corpus, lo
cual permite adaptar los prompts de manera automatica. [19].

Para determinar la configuración más adecuada para los experimentos siguientes de esta
tesis, se realizó un estudio comparativo entre estas dos modalidades utilizando el dataset
BioASQ. Se usaron las metricas explicadas para KRAQ (ver Sección 3.2.3). Los resultados
obtenidos se presentan en la Tabla 3.1.

Tab. 3.1: Comparación de metricas sobre KRAQ con y sin ajuste de prompts (PromptTuning) en
GraphRAG sobre el dataset BioASQ.

Métrica de Relevancia NoPromptTuning PromptTuning
Relevance 79.0 78.8
Relevance@0.70 93.1 92.9
Relevance@0.75 73.8 74.8
Relevance@0.80 42.6 40.6

A partir de los resultados presentados en la Tabla 3.1, se observa que la modalidad
sin ajuste de prompts (NoPromptTuning) ofrece un rendimiento ligeramente superior o
comparable en la mayoría de las métricas de relevancia evaluadas. Aunque la modalidad
con ajuste (PromptTuning) muestra una leve ventaja en el umbral de Relevance@0.75,
las diferencias generales no son significativas y, en los demas casos, el no ajuste resulta
marginalmente mejor.

Considerando estos hallazgos y la complejidad adicional que implica el proceso de
PromptTuning, se concluyo que, para los fines de esta tesis, la utilización de los prompts
predeterminados ofrecía un balance más favorable entre rendimiento y simplicidad me-
todológica. Por consiguiente, para el resto de los experimentos detallados que involucran
GraphRAG, se optó por la modalidad sin ajuste de prompts (NoPromptTuning).

Los prompt predeterminados de GraphRag pueden encontrarse en el Apendice E de
[19]
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3.2.5. Modelo generador de preguntas

Tras la identificación de comunidades semánticas y la generación de resúmenes para
cada una de ellas mediante el pipeline de GraphRAG (como se detalló en la Sección 3.2.4), la
siguiente etapa del sistema KRAQ consiste en transformar estos resúmenes en un conjunto
de preguntas representativas. El objetivo de esta fase es derivar, a partir de cada resumen
comunitario, una pregunta que capture la esencia del mismo y que pueda actuar como
proxy de las posibles intenciones de búsqueda de un usuario interesado en el corpus.

Este proceso de generación de preguntas se fundamenta en la utilización de un LLM
específicamente fine-tuneado. Dicho modelo está entrenado para realizar un mapeo desde
un resumen textual de entrada (proveniente de una comunidad semántica) hacia una pre-
gunta significativa y contextualmente relevante. La pregunta generada busca encapsular la
interrogante más probable o pertinente que un individuo formularía con respecto a la infor-
mación contenida en ese resumen específico. En las subsecciones siguientes, se describirá el
proceso de fine-tuning de este modelo generador y se analizarán los resultados obtenidos.

Fine-tuning del modelo

Como se introdujo en la Sección 3.1.5, la generación de preguntas representativas a
partir de los resúmenes comunitarios se basa en un modelo de lenguaje fθ específicamente
entrenado para esta tarea. Este proceso de fine-tuning, tiene como objetivo entrenar un
modelo LLM para que, dado un resumen R , pueda generar una pregunta QK que sea
semántica y contextualmente relevante para dicho resumen.

Dataset y metodología de entrenamiento. La generación de los pares de entrena-
miento (R,Q) para el ajuste fino del modelo fθ se fundamentó en la utilización de dos
datasets externos, reconocidos en el ámbito de QA: Dolly-v2 y MusiQue. La selección de
estos datasets específicos respondió a la necesidad de emplear corpus distintos a aquellos
que se utilizarían posteriormente para la evaluación final del sistema KRAQ, evitando así
cualquier posible sesgo o sobreajuste a los datos de prueba.

El dataset Dolly-v2 [13] esta compuesto por aproximadamente 15,000 ejemplos de se-
guimiento de instrucciones generados por humanos, resulta idóneo por su diversidad y
calidad. Por su parte, MusiQue [73] es un dataset diseñado para evaluar el razonamiento
multi-salto en tareas de QA, proporcionando preguntas complejas que requieren la inte-
gración de información de múltiples fuentes. De ambos datasets, se extrajeron las tripletas
(Q,A,E) (pregunta de referencia, respuesta, evidencia) que sirvieron como base para la
síntesis de los resúmenes R y la conformación de los pares (R,Q) para el entrenamiento de
nuestro modelo generador de preguntas.

1. Síntesis de resúmenes (g): Para cada instancia (Q,E) de los datasets, se utilizó un
modelo LLM (GPT-4o) en un esquema few-shot para generar un resumen temático
R = g(Q,E). Se instruyó al modelo para que resumiera los conceptos centrales de la
evidencia E sin hacer referencia explícita a Q, produciendo así un resumen general del
contenido de una supuesta comunidad semantica relacionada. El prompt específico
utilizado para esta síntesis de resúmenes se detalla en el Apéndice 7.1.

2. Fine-tuning del generador (fθ): Con los pares (R,Q) generados, se procedió al fi-
netuning del modelo LLaMA 3.1–8B-Instruct. El objetivo fue maximizar la verosimili-
tud logarítmica de predecir la pregunta original Q dado el resumen R, E(R,Q) [logPθ(Q | R)].
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Este enfoque permite al modelo aprender a inferir las preguntas más probables y
significativas que podrían surgir naturalmente de un resumen temático, como los ge-
nerados para las comunidades. El prompt diseñado para el proceso de fine-tuning se
detalla en el Apéndice 7.2. Cabe destacar que esta misma estructura de prompt se
mantuvo para la generación de preguntas durante la fase de inferencia de KRAQ.

Configuración y parámetros del entrenamiento. El proceso de fine-tuning se llevó a
cabo utilizando la técnica QLoRA (Quantized Low-Rank Adaptation) para una adaptación
eficiente en memoria del modelo LLaMA 3.1–8B Instruct. A continuación, se resumen los
hiperparámetros y configuraciones clave empleadas.

Modelo base: meta-llama/Llama-3.1-8B-Instruct.

Cuantización (BitsAndBytes): Carga en 4-bit (load_in_4bit=True), tipo de
cómputo torch.float16, doble cuantización (bnb_4bit_use_double_quant=True),
tipo de cuantización nf4.

Configuración PEFT (LoRA): Rango (r=64), alfa LoRA (lora_alpha=16), dro-
pout LoRA (lora_dropout=0.05), bias=”none”, tipo de tarea CAUSAL_LM.

Dataset: Partición 90 % entrenamiento / 10 % evaluación.

Argumentos de entrenamiento (Principales):

• Lote por dispositivo (entrenamiento y evaluación): 2.
• Pasos de acumulación de gradiente: 4.
• Épocas de entrenamiento: 3.
• Tasa de aprendizaje: 2× 10−4.
• Precisión mixta: bf16=True.
• Optimizador: paged_adamw_8bit.
• Longitud máxima de secuencia: 2048 tokens.

El entrenamiento se realizó sobre una GPU NVIDIA GeForce RTX 3090 con 24 GB de
VRAM.

Resultados del entrenamiento. El proceso de finetuning del modelo generador de pre-
guntas mostró una convergencia estable. La Figura 3.6 ilustra la curva de pérdida (loss)
durante el entrenamiento sobre el conjunto de validación. Se observa una rápida disminu-
ción inicial de la pérdida, seguida de una estabilización alrededor de un valor de 0.65-0.70,
lo que indica que el modelo aprendió efectivamente a mapear los resúmenes a las preguntas
correspondientes. La tendencia suavizada (ventana de 50 pasos) confirma esta estabiliza-
ción.
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Fig. 3.6: Curva de pérdida en el conjunto de validación durante el proceso de finetuning del modelo
generador de preguntas de KRAQ. La línea azul muestra la pérdida por paso y la línea
roja una tendencia suavizada con una ventana de 50 pasos.

Como resultado final del pipeline completo de KRAQ, se obtiene un listado de preguntas
representativas {QK

1 , QK
2 , . . . , QK

k }, una por cada comunidad semántica detectada en el
grafo de conocimiento (considerando todos los niveles jerárquicos de comunidades).

3.2.6. Complejidad Computacional de KRAQ

La complejidad computacional del pipeline completo de KRAQ está dominada en gran
medida por las etapas iniciales gestionadas por el framework GraphRAG, específicamente
la extracción de entidades y relaciones, la construcción del grafo de conocimiento y la
detección jerárquica de comunidades. Estas operaciones, si bien intensivas, se realizan una
única vez por corpus durante una fase de preprocesamiento.

Una vez que se han identificado las comunidades semánticas y se han generado sus
respectivos resúmenes textuales (como se describe en la Sección 3.2.4), la etapa final de
KRAQ, que es la generación de una pregunta representativa por cada resumen comunita-
rio, presenta una complejidad que es lineal con respecto al número total de comunidades
detectadas en todos los niveles jerárquicos. Es decir, por cada resumen de comunidad Ri

obtenido de GraphRAG, se realiza una única inferencia con el modelo de lenguaje fθ (ajus-
tado como se detalla en la Sección 3.2.5) para producir la pregunta QK

i . Si Nc es el número
total de comunidades identificadas, la generación de preguntas requerirá Nc inferencias del
LLM.

El número de comunidades y, por lo tanto, el número de preguntas generadas, depende
de la estructura inherente del corpus, su tamaño, la diversidad temática y los parámetros
del algoritmo de detección de comunidades (e.g., el algoritmo Leiden). Para los datasets
utilizados en esta tesis, cada uno compuesto por aproximadamente 5 millones de tokens
(resultando en unos 15,000 chunks de 300 tokens, como se describe en la Sección 3.2.2), se
observó la siguiente cantidad de preguntas generadas (equivalente al número de comuni-
dades detectadas en todos los niveles):

TriviaQA: 17,378 preguntas.
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PubHealth: 10,412 preguntas.

HotPotQA: 25,660 preguntas.

BioASQ: 19,100 preguntas.

A modo ilustrativo, la distribución de las preguntas generadas por KRAQ para el
dataset HotPotQA a través de los diferentes niveles jerárquicos de comunidades se presenta
en la Tabla 3.2. Los niveles más bajos (e.g., Nivel 0, Nivel 1) representan comunidades más
amplias y generales, mientras que los niveles superiores (e.g., Nivel 3, Nivel 4) corresponden
a comunidades más pequeñas, específicas y granulares.

Tab. 3.2: Distribución de preguntas generadas por KRAQ (y, por ende, comunidades detectadas)
por nivel jerárquico para el dataset HotPotQA.

Nivel Jerárquico Número de Preguntas/Comunidades
0 111
1 2,392
2 11,468
3 10,717
4 961
5 11

Total 25,660

La capacidad de KRAQ para generar un conjunto tan extenso y jerarquizado de pre-
guntas representativas es una de sus características distintivas. Este conjunto no solo busca
una cobertura semántica amplia, sino que también ofrece preguntas a diferentes niveles de
granularidad temática, lo que podría ser explotado en futuras aplicaciones avanzadas de
RAG que requieran un entendimiento contextual a múltiples escalas.

3.2.7. Resultados de KRAQ

Tras haber detallado el protocolo experimental para la evaluación de KRAQ (Sec-
ción 3.2.3) y el proceso completo de generación de sus preguntas representativas, desde
la construcción del grafo de conocimiento (Sección 3.2.4) hasta el finetuning del modelo
generador (Sección 3.2.5), esta sección se enfoca en presentar los hallazgos empíricos.

El rendimiento de KRAQ se evaluará comparándolo con dos alternativas:

KRAQ-Instruct: Para aislar el impacto del fine-tuning específico realizado en
KRAQ, se considera esta variante. KRAQ-Instruct sigue el mismo pipeline de Graph-
RAG para obtener los resúmenes comunitarios, pero, para la generación de preguntas
a partir de estos, utiliza el modelo LLaMA 3.1–8B Instruct (sin el fine-tuning de la
Sección 3.2.5).

Baseline Aleatorio (Random): Este enfoque, ya descrito en la Sección 3.2.3,
genera preguntas a partir de chunks de texto seleccionados aleatoriamente, sirviendo
como punto de referencia para métodos sin análisis estructural profundo.

A continuación, se presentan los resultados cuantitativos de estas tres aproximaciones,
utilizando las métricas de Relevance y Relevance@τ (con τ ∈ {0,70, 0,75, 0,80}) definidas
en el diseño de evaluación.
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Resultados

Los resultados obtenidos para cada dataset y cada variante del sistema se presentan en
la Tabla 3.3. Los valores indican el porcentaje de preguntas generadas que cumplen con
los criterios de cada métrica.

Tab. 3.3: Comparación del rendimiento de KRAQ (con modelo fine-tuned), KRAQ-Instruct (mo-
delo preentrenado) y el Baseline Aleatorio en la generación de preguntas representativas.
Las métricas son Relevancia promedio (BERTScore F1) y Relevance@τ para diferentes
umbrales τ .

Dataset Métrica KRAQ (Fine-tuned) KRAQ-Instruct Baseline Aleatorio
TriviaQA

Relevance 78.1 75.5 72.2
Relevance@0.70 93.0 90.6 72.0
Relevance@0.75 71.0 50.3 22.3
Relevance@0.80 33.0 15.0 3.6

HotPotQA
Relevance 74.2 72.8 69.5

Relevance@0.70 84.0 75.0 42.7
Relevance@0.75 40.4 29.9 5.6
Relevance@0.80 10.0 4.7 0.3

PubHealth
Relevance 68.5 68.0 66.7

Relevance@0.70 33.6 30.3 15.6
Relevance@0.75 4.8 3.4 1.1
Relevance@0.80 0.4 0.26 0.03

BioASQ
Relevance 79.0 77.9 74.1

Relevance@0.70 93.1 93.6 84.3
Relevance@0.75 73.8 70.8 42.7
Relevance@0.80 42.6 34.9 8.6

Análisis de los resultados

La Tabla 3.3 evidencia consistentemente la superioridad del enfoque KRAQ, particu-
larmente en su versión con el modelo generador de preguntas fine-tuneado, en comparación
tanto con el uso del modelo instruct sobre los mismos resúmenes comunitarios (KRAQ-
Instruct) como con el baseline de generación a partir de chunks aleatorios.

Impacto del ajuste fino (Fine-tuning): En la mayoría de los datasets y métricas,
KRAQ con el modelo fine-tuned supera a KRAQ-Instruct. Por ejemplo, en TriviaQA, la
Relevance aumenta de 75.5 % a 78.1 %, y la proporción de preguntas que superan un umbral
de relevancia de 0.75 (Relevance@0.75) pasa de un 50.3 % a un notable 71.0 %. Similarmen-
te, en HotPotQA, el incremento en Relevance@0.75 es de 29.9 % a 40.4 %. Estos resultados
sugieren que el proceso de fine-tuning, al entrenar el modelo específicamente para mapear
resúmenes comunitarios a preguntas relevantes, logra capturar de manera más efectiva la
intención semántica subyacente en comparación con un modelo generalista. La única ex-
cepción notable se observa en BioASQ para Relevance@0.70, donde KRAQ-Instruct obtie-
ne un rendimiento ligeramente superior (93.6 % vs 93.1 %), aunque las diferencias en otros
umbrales y en la relevancia promedio para BioASQ siguen favoreciendo al modelo ajustado.
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Superioridad sobre el baseline aleatorio: Ambas variantes de KRAQ demuestran una
mejora sustancial sobre el baseline que genera preguntas a partir de chunks aleatorios.
Este último, si bien puede producir preguntas localmente coherentes, falla en capturar la
estructura temática global del corpus. Esto es particularmente evidente en las métricas
de Relevance@τ con umbrales más altos. Por ejemplo, en TriviaQA para Relevance@0.75,
KRAQ (fine-tuned) alcanza un 71.0 % mientras que el baseline aleatorio solo llega al 22.3 %.
En HotPotQA, la diferencia es aún más pronunciada: 40.4 % para KRAQ frente a un escaso
5.6 % para el baseline. Esto subraya el valor de la estructuración del conocimiento mediante
grafos y la generación de resúmenes comunitarios que realiza KRAQ antes de la etapa de
generación de preguntas, asegurando una cobertura semántica más amplia y representativa.

Rendimiento en PubHealth: Es interesante notar que, si bien KRAQ sigue superando
a los otros métodos en PubHealth, las mejoras y los valores absolutos de las métricas son
consistentemente más bajos en comparación con los otros datasets. Por ejemplo, Relevan-
ce@0.75 para KRAQ (fine-tuned) es solo del 4.8 %. Esto puede atribuirse a la naturaleza
particular de las ”preguntas” de referencia en PubHealth, que originalmente son afirma-
ciones o claims que requieren verificación. La tarea de generar una pregunta a partir de
un resumen temático podría no alinearse tan directamente con la formulación de un claim
factual como lo hace con las preguntas más abiertas o de búsqueda de información de
TriviaQA o HotPotQA. No obstante, incluso en este escenario más desafiante, la estructu-
ración de KRAQ sigue ofreciendo un rendimiento superior al baseline.

Conclusiones del análisis: Los resultados validan empíricamente la efectividad de la
arquitectura KRAQ para generar preguntas representativas que cubren semánticamente
el contenido de un corpus. El proceso de fine-tuning del modelo generador de preguntas
demuestra ser beneficioso, mejorando la calidad de las preguntas generadas a partir de los
resúmenes comunitarios. La comparación con el baseline aleatorio resalta la importancia
fundamental del análisis estructural y la síntesis temática que KRAQ introduce antes de
la generación final de preguntas.



4. COMBINED RETRIEVE RAG

Este capítulo introduce y evalúa la primera aplicación práctica de las preguntas re-
presentativas generadas por KRAQ (descrito en el Capítulo 3): la estrategia de Combined
Retrieve RAG. El objetivo principal de esta técnica es abordar la limitación de los siste-
mas RAG tradicionales en cuanto a la diversidad semántica de los documentos recuperados,
proponiendo un método para enriquecer el contexto proporcionado al LLM y, consecuen-
temente, mejorar la precisión de las respuestas. Primero se detallará la metodología del
algoritmo de recuperación combinada, y luego se presentará su evaluación experimental.

4.1. Metodologia de Combined Retrieve RAG

Los sistemas RAG tradicionales, si bien son efectivos, a menudo producen un conjunto
de documentos recuperados que, aunque superficialmente similares a la consulta del usua-
rio, pueden carecer de diversidad semántica y omitir facetas relevantes del conocimiento
disponible. Para abordar esta limitación y mejorar la cobertura temática, esta tesis pro-
pone Combined Retrieve RAG, una estrategia de recuperación que integra el conjunto de
preguntas representativas generadas por KRAQ. La idea central es utilizar estas preguntas
precomputadas, derivadas de la estructura profunda del corpus, como consultas comple-
mentarias para enriquecer y diversificar el contexto proporcionado al LLM.

4.1.1. Algoritmo

La estrategia de Recuperación Combinada, denominada Combined Retrieve RAG,
busca enriquecer el conjunto de documentos recuperados para una consulta de usuario
Q. Para ello, aprovecha un conjunto precomputado de preguntas representativas QK =
{QK

1 , QK
2 , . . . , QK

k }, generadas previamente por el sistema KRAQ (como se detalló en el
Capítulo 3). El objetivo es obtener un total de M documentos relevantes para la generación
final de la respuesta.

El proceso se desarrolla en las siguientes etapas, formalizadas posteriormente en el
Algoritmo 4:

1. Selección de preguntas auxiliares de KRAQ: Dada la consulta original Q, el
primer paso consiste en identificar, dentro del conjunto QK, las n preguntas que exhi-
ben la mayor similitud semántica con Q. Esta similitud se mide típicamente mediante
la similitud coseno entre sus respectivas representaciones vectoriales (embeddings). El
hiperparámetro n define cuántas de estas preguntas de KRAQ, que denominaremos
QK

sim, se utilizarán como consultas complementarias.

2. Distribución del esfuerzo de recuperación: Se establece una proporción α ∈
(0, 1) para determinar cómo se distribuye la recuperación de los M documentos. Una
porción de ⌊α ·M⌋ documentos se recuperará utilizando la consulta original Q. El
presupuesto restante, M ′ = M − ⌊α ·M⌋, se asignará equitativamente entre las n
preguntas seleccionadas de QK

sim, de modo que cada una de ellas buscará recuperar
⌊M ′/n⌋ documentos.

54
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3. Recuperación documental y consolidación: La recuperación se efectúa mediante
una función Retrieve(q,m,D), que retorna los m documentos más relevantes para una
consulta q, asegurando que no se incluyan documentos previamente recuperados y
listados en D.

Primero, se recuperan ⌊α ·M⌋ documentos utilizando la consulta original Q, sin
exclusiones iniciales: DQ = Retrieve(Q, ⌊α ·M⌋, ∅). Estos forman el conjunto
base de documentos.

Luego, para cada pregunta QK
i ∈ QK

sim, se recuperan ⌊M ′/n⌋ documentos adi-
cionales: DKi = Retrieve(QK

i , ⌊M ′/n⌋, DQ ∪ (
⋃

j<iDKj )). Es crucial que en
cada una de estas recuperaciones complementarias se excluyan los documen-
tos ya obtenidos tanto por Q como por las preguntas de KRAQ procesadas
anteriormente, para garantizar la diversidad y evitar redundancias.

Todos los documentos únicos recuperados (DQ y todos los DKi) se consolidan
en un único conjunto final Dtotal.

4. Generación de la respuesta final: El conjunto consolidado Dtotal se concatena
para formar el contexto enriquecido. Este contexto, junto con la consulta original
Q, se proporciona a un LLM para generar la respuesta final al usuario, siguiendo el
paradigma estándar de RAG [40].

Pseudocódigo

El procedimiento de Recuperación Combinada se formaliza en el Algoritmo 4.

Algorithm 4 Combined Retrieve RAG
Require: Consulta original Q, conjunto de preguntas generadas QK , función

Retrieve(q,m,D), número total de documentos M , proporción α ∈ (0, 1), número de
preguntas similares n

Ensure: Respuesta generada Afinal
1: QK

sim ← TopNSimilar(Q,QK , n) ▷ n preguntas representativas mas similares
2: mmain ← ⌊α ·M⌋
3: msimilar ← ⌊(M −mmain)/n⌋
4: Dtotal ← Retrieve(Q,mmain, ∅)
5: for cada QK

i ∈ QK
sim do

6: Di ← Retrieve(QK
i ,msimilar, Dtotal) ▷ Recupera documentos unicos

7: Dtotal ← Dtotal ∪Di

8: contexto← ConcatenateDocuments(Dtotal)
9: Afinal ← GenerateAnswer(Q, contexto)

10: return Afinal

4.2. Experimentación y resultados de Combined Retrieve RAG

En la presente sección se procede a evaluar el impacto de la integración de las preguntas
representativas, generadas mediante el sistema KRAQ, dentro de un pipeline de RAG
tradicional. Esta integración se realiza a través del enfoque de recuperación combinada,
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denominado en este trabajo como Combined Retrieve RAG, cuya metodología fue detallada
en la Sección 4.1.

El objetivo de este análisis experimental es determinar si la estrategia de Combined
Retrieve RAG logra una mejora en la precisión de las respuestas generadas por el sistema
RAG. Se hipotetiza que dicho incremento en la precisión se deriva del enriquecimiento en
la diversidad del conjunto de documentos recuperados, al incorporar información comple-
mentaria obtenida a partir de preguntas similares generadas por KRAQ.

A continuación, se detallará la configuración específica de la implementación utilizada
para esta evaluación y se analizarán los resultados obtenidos en términos de precisión de
respuesta.

4.2.1. Diseño de evaluación

El protocolo de evaluacion de Combined Retrieve RAG se basa en la utilización de
conjuntos de datos (datasets) estándar (explicados en la Sección 3.2.1)

Cada instancia de estos datasets se modela como una tripleta (Q,A,E), donde Q
representa la pregunta de referencia formulada por un humano, A la respuesta considerada
correcta o de referencia, y E el corpus de documentos o pasajes textuales asociados a dicha
pregunta y respuesta.

Procesamiento y Generación de Respuestas

El flujo experimental para cada instancia (Q,A,E) del dataset comprende las siguientes
etapas:

1. Generación de preguntas representativas de KRAQ: Como paso preliminar
y fundamental, se aplica el pipeline completo de KRAQ sobre el corpus E corres-
pondiente a cada dataset. Este proceso culmina con la generación de un conjunto
de preguntas representativas QK = {QK

1 , QK
2 , . . . , QK

k }, derivadas de la estructura
semántica del corpus. Este conjunto QK es específico para cada corpus E.

2. Ejecución del algoritmo de recuperación combinada: Posteriormente, para
cada pregunta de referencia Q de una instancia del dataset, se ejecuta el algoritmo
de Recuperación Combinada (descrito en la Sección 4.1). La pregunta Q se utiliza
como la consulta original, y el conjunto QK (generado en el paso anterior a partir del
mismo corpus E) se emplea como el conjunto de preguntas representativas de KRAQ.
La recuperación de documentos se realiza sobre el corpus completo E asociado al
dataset. El resultado de este proceso es una respuesta generada, Agen.

Baseline

Como baseline para Combined Retrieve RAG se utiliza el algoritmo de Traditional
RAG explicado en la Sección 2.2

Métricas de Evaluación

La calidad de las respuestas generadas Agen por los sistemas RAG se evaluó en relación
con la pregunta original Q y la respuesta de referencia del dataset A. Se emplearon dos
métricas.
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Exact Match (EM). Exact Match (EM) es una medida estándar y rigurosa, amplia-
mente utilizada en tareas de pregunta-respuesta [66]. El EM verifica si la respuesta de
referencia A esta exactamente en la respuesta generada Agen después de un proceso de
normalización textual. Este proceso de normalización es crucial para asegurar una compa-
ración justa y típicamente incluye:

Conversión de todo el texto a minúsculas.

Eliminación de artículos (e.g., el, la, un, una).

Eliminación de signos de puntuación.

Estandarización de los espacios en blanco (e.g., múltiples espacios se reducen a uno
solo, y se eliminan espacios al inicio y al final).

Una respuesta generada se considera correcta según EM solo si, tras esta normalización, la
respuesta de referencia encuentra una coincidencia carácter por carácter en la respuesta de
referencia normalizada. Aunque la métrica EM es considerablemente estricta y no otorga
crédito parcial ni reconoce paráfrasis o reformulaciones semánticamente equivalentes, pro-
porciona una estimación clara y precisa del grado de coincidencia literal entre la respuesta
esperada y la generada. Su simplicidad y objetividad la hacen valiosa para comparar el
rendimiento de los sistemas y es la metrica mas utilizada en la comunidad científica ac-
tualmente.

Evaluación con LLM como Juez. En algunos casos, la métrica de Exact Match resulta
excesivamente estricta. Las respuestas de los datasets pueden admitir múltiples formula-
ciones correctas que, aunque semánticamente equivalentes, diferirían textualmente de la
respuesta de referencia.

Por esta razón, la calidad de las respuesta generada Agen tambien se evaluó mediante
un enfoque de Evaluación con LLM como Juez. Inspirados por trabajos recientes que
validan el uso de modelos de lenguaje de gran capacidad como evaluadores automáticos
de la calidad de texto generado [46, 89], se empleó un LLM (Llama-3.1-8b-Instruct) para
determinar si la respuesta generada Agen aborda la pregunta Q de manera semánticamente
equivalente y correcta en comparación con la respuesta de referencia A.

El procedimiento fue el siguiente:

Input al LLM-Juez:

Pregunta de Referencia (Q): [Texto de Q del dataset]

Respuesta Generada por el Sistema (Agen): [Texto de Agen]

Respuesta de Referencia (Agen): [Texto de Agen]

Instrucción para el LLM-Juez:
Considerando la Pregunta de Referencia, ¿la Respuesta Generada por el Sis-
tema responde a la pregunta de la misma manera y con la misma corrección
factual que la Respuesta Ideal de Referencia? Responda únicamente con ”Sí” o
”No”.

El prompt exacto utilizado se detalla en el Apéndice 7.7. La proporción de respuestas ”Sí”
se toma como la métrica de precisión. Este enfoque permite estimar la fidelidad semántica
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y la corrección conceptual de la respuesta generada, trascendiendo las limitaciones de una
simple comparación léxica superficial y siendo a veces más adecuado para respuestas de
formato libre y explicativas.

Justificación del uso combinado. Aunque distintas en su enfoque, EM y LLM-as-
Judge se complementan para ofrecer una evaluación más completa. EM aporta una medida
objetiva y directa de coincidencia léxica, útil por su comparabilidad, pero limitada ante
respuestas semánticamente correctas con distinta formulación. LLM-as-Judge, en cambio,
permite valorar la equivalencia factual y semántica, captando mejor la comprensión y
matices del modelo aunque este mas expuesto a riesgos debido a la alucinación de LLM.
La combinación de ambas metricas permite reconocer tanto la precisión literal como la
inteligencia semántica en las respuestas generadas.

4.2.2. Setup experimental y parámetros elegidos

Para evaluar la efectividad de la estrategia Combined Retrieve RAG, se configuró un
pipeline de RAG cuyos componentes y parámetros se describen a continuación. El objetivo
fue comparar el rendimiento de un sistema RAG tradicional con la variante enriquecida
mediante las preguntas representativas generadas por KRAQ.
Componentes del Pipeline RAG:

Modelo Generador: Se empleó el modelo llama3.1-8b-instruct (en su versión cuan-
tizada con AWQ), operando sobre el servidor vLLM. La configuración y justificación
de esta elección se detallaron en las Seccion 3.2.2.

Retriever (Recuperador): El sistema de recuperación de información se basó en la si-
militud coseno entre representaciones vectoriales (embeddings). Específicamente, se
utilizaron embeddings generados por el modelo nomic-embed-text, y la indexación
y búsqueda vectorial se gestionaron mediante una instancia local de QDrant. Este
componente se describió en la Sección 3.2.2.

Corpus Documental: Para la evaluación de Combined Retrieve RAG, se utilizó como
base de conocimiento el mismo corpus de documentos de evidencia E (aproximada-
mente 5 millones de tokens por dataset, como se describe en la Sección 3.2.2) que
fue procesado previamente por el sistema KRAQ para generar sus preguntas repre-
sentativas. Las preguntas de referencia (Q) utilizadas para poner a prueba el sistema
Combined Retrieve RAG se seleccionaron de los datasets originales, asegurándose
de que los documentos de evidencia necesarios para responderlas estuvieran conteni-
dos dentro de este corpus E. El número de preguntas de referencia de cada dataset
utilizadas para la evaluación específica de Combined Retrieve RAG fue el
siguiente:

TriviaQA: 300 preguntas.

HotPotQA: 300 preguntas.

BioASQ: 1000 preguntas.

PubHealth: 1000 preguntas (afirmaciones).

La selección de un número a veces limitado de preguntas para estos experimentos con
sistemas RAG se debió, al igual que el submuestreo de los corpus, a consideraciones
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pragmáticas sobre el tiempo disponible para la ejecución y análisis en el contexto de
esta tesis, buscando obtener una evaluación indicativa del rendimiento.

Parámetros de recuperación para Combined Retrieve: La estrategia de Combined
Retrieve opera con los siguientes parámetros clave:

Número total de documentos a recuperar (M): Este valor, también conocido
como top-k en la literatura, define la cantidad total de documentos que se pasarán
al contexto del LLM generador. Para TriviaQA, HotPotQA y BioASQ se estableció
M = 15; para PubHealth, M = 10. Esta diferenciación responde a las características
intrínsecas de cada dataset.

Proporción de recuperación para la pregunta original (α): Define la fracción
de M documentos que se recuperarán utilizando la pregunta original del usuario (Q).
Se utilizó α = 0,5 para todos los datasets, asignando un 50 % del ”presupuesto” de
recuperación a la consulta original.

Número de preguntas representativas similares a utilizar (n): Especifica
cuántas preguntas de QK (las más similares semánticamente a Q) se usarán para la
recuperación complementaria. Se fijó n = 2 para todos los datasets.

En todos los casos, se implementó un mecanismo para evitar la recuperación de documentos
duplicados entre la búsqueda original y las búsquedas complementarias. Para cada una de
las n preguntas representativas QG

i seleccionadas, se recuperó un número de documentos
únicos igual a ⌊(1− α) ·M/n⌋.

Prompt de generación: Para la generación final de respuestas por parte del modelo LLM
(llama3.1-8b-instruct), se empleó un prompt estandarizado, cuya formulación exacta se
detalla en el Apéndice 7.4. Este mismo prompt se utilizó consistentemente para las dos
variantes comparadas:

Traditional RAG (RAG Base): Recuperación basada únicamente en la pregunta
original Q.

Combined Retrieve RAG: Recuperación enriquecida con las preguntas similares
generadas por KRAQ.

4.2.3. Resultados y analisis

La Tabla 4.1 presenta una comparación del rendimiento entre la estrategia de RAG
tradicional y Combined Retrieve RAG, utilizando las métricas de EM y Evaluación con
LLM como Juez. Un análisis detallado revela las siguientes tendencias:

Tab. 4.1: Comparación de la precisión de respuesta entre RAG Tradicional y Combined Retrieve
RAG utilizando Exact Match (EM) y Evaluación con LLM como Juez (LLM-as-judge).
Dataset Exact Match LLM-as-judge

Traditional Combined Traditional Combined
HotPotQA 57.0 58.6 76.3 77.3
TriviaQA 88.6 89.0 93.6 94.6
PubHealth 65.5 66.2 65.5 66.2
BioASQ 69.6 67.5 78.8 79.5
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Evaluación mediante LLM como Juez. Al examinar los resultados obtenidos mediante
la Evaluación con LLM como Juez, que prioriza la corrección semántica sobre la coinci-
dencia léxica estricta, se observa una mejora consistente y generalizada con la estrategia
Combined Retrieve RAG. Específicamente, en el dataset HotPotQA, la precisión se incre-
mentó de 76.3 % a 77.3 %, lo que representa una mejora de aproximadamente el 1.3 %. De
manera similar, en TriviaQA, se registró un aumento de 93.6 % a 94.6 %, (+1.1 %). Para
PubHealth, el rendimiento también experimentó un ascenso, pasando de 65.5 % a 66.2 %
(+1.1 %). Finalmente, en BioASQ, la puntuación mejoró de 78.8 % a 79.5 % (+0.9 %). Esta
tendencia uniforme a través de los cuatro datasets, aunque las magnitudes de mejora sean
modestas, sugiere que la diversificación del contexto de entrada para el LLM generador,
lograda mediante la incorporación de documentos recuperados a partir de las preguntas
representativas generadas por KRAQ, tiene un impacto positivo. El enriquecimiento con
perspectivas semánticas adicionales parece dotar al LLM de una base informativa más
robusta y diversa, lo que se traduce en una capacidad mejorada para generar respuestas
conceptualmente más correctas y completas.

Evaluación mediante Exact Match. En lo referente a la métrica de Exact Match, que
evalúa la coincidencia literal exacta tras la normalización textual, la estrategia Combi-
ned Retrieve RAG también exhibe una tendencia mayoritariamente positiva, aunque con
matices. En el dataset HotPotQA, el EM se elevó de 57.0 % a 58.6 %, lo que representa
un incremento de aproximadamente el 2.8 %. Para TriviaQA, la mejora fue de 88.6 % a
89.0 % (+0.5 %), mientras que en PubHealth, el EM aumentó de 65.5 % a 66.2 % (+1.1 %).
Estos resultados indican que, en una proporción significativa de los casos para estos tres
datasets, el contexto diversificado no solo no perjudica la capacidad del LLM para generar
la respuesta literal esperada, sino que puede incluso mejorarla. No obstante, es importante
señalar que el comportamiento en el dataset BioASQ bajo esta métrica presenta ciertas
particularidades.

Consideraciones específicas para la evaluación en BioASQ. El dataset BioASQ,
debido a la naturaleza de sus respuestas de referencia, requiere una consideración parti-
cular al interpretar los resultados de evaluación. Como se describió en la Sección 3.2.1,
las respuestas de referencia para este dataset se presentan típicamente como una lista de
entidades o términos (e.g., genes, fármacos) que contestan directamente a la pregunta.

Para la evaluación mediante Exact Match en este dataset, se utilizó esta lista como
respuesta de referencia. Sin embargo, estas listas pueden ser problemáticas para una métrica
de coincidencia literal estricta, ya que frecuentemente contienen múltiples formas de escribir
la misma entidad, sinónimos, o un número extenso de ítems. Para adaptar la métrica EM
a estas características, se implementó una variante para BioASQ: una respuesta generada
Agen se consideró correcta si contenía, de forma literal y tras la normalización, al menos
la mitad de los ítems presentes en la lista de la respuesta de referencia A.

Dada la complejidad inherente a evaluar la cobertura de una lista mediante EM, la Eva-
luación con LLM como Juez se consideró particularmente pertinente para BioASQ, ya
que permite una valoración más matizada de si la respuesta generada cubre adecuadamente
los elementos clave de la lista de referencia. Para esta evaluación, la lista de respuestas de
referencia se convirtió en una cadena de texto. El prompt para el LLM-Juez (detallado en el
Apéndice 7.7) fue modificado para BioASQ añadiendo las siguientes directrices específicas:
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The reference answers are provided as a list of true answers to the question.
The generated answer should cover most of the items in the reference answers.

Esta adaptación instruye al LLM-Juez para que verifique si la respuesta generada Agen
incluye la mayoría de los elementos de la lista de referencia A, ofreciendo así una medida
de la cobertura semántica y factual de la lista.

A pesar de la flexibilización en EM, el rendimiento para Combined Retrieve RAG en
BioASQ fue de 67.5 %, una disminución en comparación con el 69.6 % del RAG tradicional
(Tabla 4.1). Esta reducción en EM contrasta con la mejora observada en la misma tabla
para la evaluación con LLM-as-judge (que utilizó el prompt adaptado y subió a 79.5 %
frente a 78.8 % en el RAG tradicional). Este contraste podría indicar que el contexto más
diverso de Combined Retrieve RAG lleva al LLM a generar respuestas que, si bien cubren
semánticamente bien los elementos de la lista según LLM-as-judge, pueden no alcanzar el
umbral de coincidencia literal requerido por nuestra variante de EM, quizás al parafrasear
o presentar los elementos de forma diferente. Este comportamiento resalta la importancia
de analizar los resultados de diferentes métricas de forma conjunta y comprender las par-
ticularidades de cada dataset y método de evaluación.

Conclusión. En conjunto, los resultados obtenidos sugieren que la estrategia Combined
Retrieve RAG, que integra preguntas generadas por KRAQ, representa una optimización
valiosa para sistemas RAG. La mejora consistente en la métrica de LLM-as-judge a través
de todos los datasets indica el beneficio de la diversificación contextual en términos de
calidad semántica. Las mejoras en EM para la mayoría de los datasets refuerzan esta
observación.

La tendencia general positiva posiciona a Combined Retrieve RAG como una técnica
prometedora para la optimización del rendimiento y la robustez de los sistemas RAG.

4.2.4. Estudios de ablación

Para los estudios de ablación presentados en esta sección, se utilizó la misma cantidad
de preguntas de referencia de los datasets que en los experimentos principales de Combined
Retrieve RAG, con el fin de asegurar la comparabilidad.

Impacto del número de preguntas similares de KRAQ

Este estudio de ablación investiga cómo varía la precisión de Combined Retrieve RAG
al modificar el número de preguntas representativas de KRAQ (n) que se utilizan para la
recuperación complementaria. En este análisis, se mantuvo fija la proporción de recupera-
ción para la pregunta original en α = 0,5, y el número total de documentos recuperados
en M = 15. Los resultados obtenidos sobre el dataset HotPotQA, utilizando tanto Exact
Match como la Evaluación con LLM como Juez, se muestran en la Tabla 4.2.
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Tab. 4.2: Impacto del número de preguntas similares de KRAQ (n) en la precisión (EM % y LLM-
as-judge %) de Combined Retrieve RAG sobre HotPotQA (α = 0,5,M = 15).

Número de Preguntas EM LLM-as-judge
Similares (n)

1 58.67 77.00
2 58.67 77.33
3 58.67 77.33
4 57.00 76.00

Análisis. Los resultados de la Tabla 4.2 indican que el rendimiento de Combined Retrieve
RAG, al variar el número de preguntas similares (n) manteniendo α = 0,5, exhibe una
notable estabilidad para valores bajos de n, seguida de una disminución al incrementar n
a 4.

En términos de Exact Match, la precisión se mantiene consistentemente en 58.67 %
para n = 1, 2, y 3. Esta estabilidad sugiere que, hasta tres preguntas complementarias,
el sistema logra integrar la información diversificada sin una pérdida en la capacidad de
generar la respuesta literal correcta.

Una tendencia similar, aunque con un ligero óptimo, se observa con la métrica de LLM
como Juez. La precisión comienza en 77.00 % para n = 1, y alcanza un máximo de 77.33 %
para n = 2 y n = 3, indicando un pequeño beneficio al incorporar dos o tres perspectivas
adicionales para mejorar la calidad semántica de la respuesta.

Sin embargo, para ambas métricas, se produce una clara disminución del rendimiento
cuando el número de preguntas similares se incrementa a n = 4. El EM cae a 57.00 %
y la precisión con LLM-as-judge desciende a 76.00 %. Esta caída sugiere que, si bien la
diversificación del contexto mediante múltiples consultas es inicialmente beneficiosa, un
número excesivo de preguntas complementarias, especialmente cuando el presupuesto total
de documentos M es fijo, puede volverse contraproducente. Al distribuir los M documentos
recuperados entre un mayor número de consultas, cada consulta obtiene un conjunto más
reducido de documentos. Esto podría llevar a que cada perspectiva adicional no aporte
suficiente información nueva o relevante, o incluso que se introduzca ruido o información
menos pertinente, disminuyendo la efectividad general del contexto proporcionado al LLM.

Impacto de la proporción de recuperación (α)

Este estudio de ablación examina la influencia de la proporción α, que determina qué
fracción del presupuesto total de recuperación M (fijado en 15 documentos) se asigna a
la pregunta original del usuario, y qué fracción se distribuye entre las preguntas comple-
mentarias de KRAQ. Para este análisis, se mantuvo fijo el número de preguntas similares
de KRAQ en n = 2. Se incluyó también el caso de α = 1,0, que equivale al RAG tradi-
cional donde todos los documentos se recuperan únicamente con la pregunta original. Los
resultados obtenidos sobre el dataset HotPotQA, utilizando tanto Exact Match como la
Evaluación con LLM como Juez, se presentan en la Tabla 4.3.
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Tab. 4.3: Impacto de la proporción de recuperación para la pregunta original (α) en la precisión
(EM % y LLM-as-judge %) de Combined Retrieve RAG sobre HotPotQA (n = 2,M =
15). El caso α = 1,0 representa el RAG Tradicional.

Proporción α EM LLM-as-judge
0.25 56.00 75.00
0.50 58.60 77.33
0.75 59.60 77.33

1.00 (Tradicional) 57.00 76.30

Análisis.En términos de Exact Match, se observa un pico de rendimiento con α = 0,75,
alcanzando 59.60 %. Este valor es superior tanto al RAG tradicional como a configuraciones
con menor peso en la pregunta original. Esto sugiere que una estrategia que combina
una fuerte ponderación de la pregunta original (75 %) con una contribución menor pero
significativa de las preguntas de KRAQ (25 % distribuido entre n = 2 preguntas) es la más
efectiva para obtener la respuesta literal precisa.

Con la métrica de LLM como Juez, la tendencia es similar, con el rendimiento máximo
de 77.33 % alcanzado tanto con α = 0,50 como con α = 0,75. Ambos valores superan al
RAG tradicional y a la configuración con α = 0,25 .

En conjunto, estos resultados confirman que la pregunta original del usuario es el ancla
fundamental para la relevancia, pero que la diversificación contextual introducida por las
preguntas de KRAQ puede conducir a mejoras en la precisión. Una dependencia excesiva
de las preguntas complementarias (como en α = 0,25) o la ausencia total de ellas (α = 1,0)
no resulta en el rendimiento óptimo observado con α = 0,50 o α = 0,75.

En los resultados principales de la tabla 4.1 se utilizo α = 0,50 ya que la primera
hipotesis habia sido que distribuir de manera equitativa los documentos seria lo optimo.
Este estudio de ablación que se realizó posteriormente a esos experimentos da indicios de
que α = 0,75 ofrecería aun mas beneficios en relación al RAG Tradicional. No se pudo
realizar la tabla principal de experimentos con este parámetro debido a la falta de tiempo.

Impacto del modelo generador de preguntas de KRAQ

Este estudio de ablación se centró en determinar cómo la calidad y el método de gene-
ración de las preguntas representativas de KRAQ (QK) influyen en el rendimiento final del
sistema Combined Retrieve RAG. Para este análisis, se mantuvo constante la configuración
de recuperación de Combined Retrieve RAG (con M = 15 documentos en total, n = 2
preguntas similares de KRAQ, y α = 0,5), y se varió el origen de las preguntas QK.

Las variantes del generador de preguntas de KRAQ consideradas fueron las mismas
que en la evaluación de KRAQ (ver Sección 3.2.7):

1. KRAQ (Fine-tuned): Utiliza el conjunto de preguntas QK generado por el modelo
de KRAQ con fine-tuning específico (Sección 3.2.5). Esta es la configuración estándar
de Combined Retrieve RAG en los resultados principales.

2. KRAQ (Instruct): Utiliza preguntas QK generadas por el modelo LLaMA 3.1–8B
Instruct, aplicado sobre los mismos resúmenes comunitarios de GraphRAG.

3. Baseline-Aleatorio: Utiliza preguntas QK generadas por el baseline aleatorio (Sec-
ción 3.2.3), que formula preguntas a partir de chunks de texto seleccionados al azar.
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La evaluación se realizó sobre el dataset BioASQ. Se presentan los resultados para am-
bas métricas: Exact Match y la Evaluación con LLM como Juez, ambos con la adaptación
para BioASQ descrita en la Sección 4.2.3. Los resultados se muestran en la Tabla 4.4.

Tab. 4.4: Impacto del modelo generador de preguntas de KRAQ en la precisión (EM % y LLM-as-
judge %) de Combined Retrieve RAG sobre BioASQ (M = 15, n = 2, α = 0,5).

Modelo Generador de EM LLM-as-judge
Preguntas QK

KRAQ (Fine-tuned) 67.5 79.5
KRAQ (Instruct) 65.1 75.7
Baseline-Aleatorio 65.3 77.7

Análisis. Los resultados de la Tabla 4.4 indican una clara dependencia del rendimiento
de Combined Retrieve RAG con respecto a la calidad y el método de generación de las
preguntas representativas QK utilizadas.

El uso de preguntas generadas por el modelo KRAQ con fine-tuning específico consis-
tentemente resulta en la mayor precisión en ambas métricas: 67.5 % en EM y 79.5 % en
LLM-Juez. Esto sugiere que las preguntas que son semánticamente más relevantes (como
las que produce el KRAQ fine-tuned, según se observó en la Sección 3.2.7) son más efectivas
para guiar la recuperación de documentos complementarios que enriquecen el contexto del
LLM generador de respuestas.

Es interesante observar el comportamiento de las otras dos variantes. El Baseline-
Aleatorio, que genera preguntas directamente de chunks del corpus, alcanza un 65.3 %
en EM y un 77.7 % en LLM-Juez. Estos valores superan a los obtenidos por KRAQ
(Instruct) (65.1 % en EM y 75.7 % en LLM-Juez), que utiliza el modelo preentrenado sobre
resúmenes comunitarios. Este hallazgo sugiere que, en ausencia de un fine-tuning específico
que oriente al modelo generador de preguntas, las preguntas derivadas directamente del
texto del corpus (aunque de forma aleatoria y sin análisis estructural profundo como en
el Baseline-Aleatorio) pueden ser marginalmente más efectivas para la recuperación que
aquellas generadas por un modelo instruct generalista a partir de resúmenes abstractos. El
modelo KRAQ (Instruct), aunque opera sobre representaciones temáticas más cohesivas
(los resúmenes comunitarios), podría no estar suficientemente calibrado para transformar
estos resúmenes en las consultas más significativas para la recuperación sin el entrenamiento
específico que recibe KRAQ (Fine-tuned).

La superioridad del KRAQ fine-tuned sobre ambas alternativas subraya la importancia
no solo de una buena representación del contenido (resúmenes comunitarios) sino también,
y de manera crucial, de un modelo generador de preguntas específicamente entrenado para
producir consultas que sean semánticamente relevantes y efectivas en un contexto de recu-
peración. Este estudio de ablación refuerza la conclusión de que la calidad y la especificidad
del entrenamiento del generador de preguntas de KRAQ son factores determinantes para
el éxito de las optimizaciones propuestas en los sistemas RAG.



5. EFFICIENT SPECULATIVE RAG

Este capítulo presenta la segunda aplicación principal de las preguntas generadas por
KRAQ (Capítulo 3): una optimización para el framework Speculative RAG [78] (Explicado
en Sección 2.2.3), denominada Efficient Speculative RAG. El objetivo es mitigar el cuello
de botella computacional asociado al cálculo en línea de embeddings instruidos en el Spe-
culative RAG original, proponiendo un método de pre-cómputo basado en las preguntas
de KRAQ. Se detallará la metodología de esta variante eficiente y se evaluará su impacto
en la latencia y la calidad de las respuestas.

5.1. Metodologia de Efficient Speculative RAG

En esta sección se presenta una propuesta de mejora orientada a optimizar la eficiencia
del framework Speculative RAG [78].

Antes de detallar nuestra optimización, recordemos brevemente que Speculative RAG
(Explicado en profundidad en la Sección 2.2.3) opera bajo el paradigma draft-then-verify.
En lugar de que un único LLM grande procese todo el contexto recuperado, múltiples
modelos ”borrador” (MDrafter), más pequeños y rápidos, generan en paralelo un conjunto
de respuestas candidatas, cada uno operando sobre un subconjunto diferente de los docu-
mentos recuperados. Posteriormente, un modelo ”verificador” (MVerifier), usualmente más
potente, evalúa estos borradores y selecciona el de mayor calidad como respuesta final.
Este enfoque busca reducir la latencia y explorar un espacio de respuestas más amplio.

Como se expuso en la Sección 2.2.3, uno de los principales factores que comprometen
la eficiencia del pipeline Speculative RAG original es la exigencia en el calculo para la
creación de los subconjuntos, alli debe calcular los embeddings para cada nueva pregunta
del usuario Q, los embeddings E(di | Q) para cada documento recuperado di ∈ D. Este
proceso, al ser dependiente de Q, debe repetirse cada vez que la pregunta cambia, lo que
imposibilita la precomputación y dificulta la escalabilidad del sistema.

Efficient Speculative RAG soluciona este problema al separar la generación de los em-
beddings instruidos del tiempo de consulta. En su lugar, se aprovechan embeddings pre-
computados para cada documento del corpus, los cuales han sido generados en función de
las preguntas representativas obtenidas mediante KRAQ. Estas preguntas, al reflejar los
ejes temáticos principales del corpus, actúan como proxies semánticos para las consultas
mas relevantes (como fue evidenciado en la evaluación de KRAQ Sección 3.2.7).

5.1.1. Algoritmo

El procedimiento de Efficient Speculative RAG se articula en dos fases principales,
diseñadas para optimizar la eficiencia de Speculative Rag: una fase de precomputación
realizada offline y una fase de inferencia online.

Fase de precomputación (Offline)

El objetivo de esta fase es precomputar de antemano los embedding instruidos para
optimizar la latencia de Speculative Rag.
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1. Generación de preguntas representativas: A partir del corpus global de docu-
mentos E, se genera un conjunto de k preguntas representativasQK = {QK

1 , QK
2 , . . . , QK

k }
mediante KRAQ.

2. Cálculo y almacenamiento de embeddings instruidos precalculados: Para
cada documento di ∈ E y para cada pregunta representativa QK

j ∈ QK, se calcula su
correspondiente embedding instruido. Estos embeddings se almacenan en un índice
o tabla de consulta Epre. Formalmente, para cada par (di, Q

K
j ):

Epre(di, Q
K
j ) := E(di | QK

j ) (5.1)

donde E(di | QK
j ) denota el embedding del documento di instruido por la pregunta

representativa QK
j . Así, para cada documento di, se almacena un conjunto de k

embeddings precalculados, uno por cada pregunta representativa.

Fase de inferencia (Online)

1. Recuperación inicial de documentos: Ante una nueva pregunta del usuario Q,
se realiza una recuperación inicial de un conjunto de n documentos relevantes D =
{d1, d2, . . . , dn} desde el corpus E según similitud coseno.

2. Selección de la pregunta representativa mas similar: Se identifica la pregunta
representativa QK

sim ∈ QK que exhibe la mayor similitud semántica con la pregunta
del usuario Q segun la similitud coseno:

QK
sim = arg max

QK
j ∈QK

(
cos(emb(Q), emb(QK

j ))
)

3. Utilización de embeddings precalculados para clustering: Para cada uno de
los n documentos di ∈ D recuperados en el paso 1, se accede a su embedding precal-
culado correspondiente a la pregunta representativa seleccionada QK

sim. Es decir, se
utiliza Epre(di, Q

K
sim), obtenido de la tabla Epre (ver Ecuación 5.1). Estos n embed-

dings precalculados específicos son los que se emplearán para realizar el agrupamiento
temático (clustering) mediante el algoritmo K-Means.

4. Aplicación del pipeline estándar de Speculative RAG: Una vez definidos los
clústers a partir de los embeddings Epre(di, Q

K
sim), el proceso continúa con el pipeline

estándar de Speculative RAG, tal como se describió en la Sección ??. Esto incluye:

Muestreo de subconjuntos de documentos a partir de los clústeres.
Generación paralela de borradores de respuesta (αj , βj) para cada subconjunto,
utilizando el modelo especialista MDrafter.
Evaluación de los borradores y selección de la respuesta final Â mediante el
modelo generalista MVerifier.

Formalización de Efficient Speculative Rag

El procedimiento de Efficient Speculative RAG se formaliza en el Algoritmo 5.
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Algorithm 5 Algoritmo de Efficient Speculative RAG (Inferencia Online)
Require: Pregunta del usuario Q, Corpus de documentos E, Tabla de embeddings pre-

calculados Epre, Conjunto de preguntas representativas QK, Número de documentos a
recuperar n, Número de subconjuntos m, Número de clústeres k.

Ensure: Respuesta predicha Â para la pregunta Quser.
1: function EfficientSpeculativeRag(Q,E,Epre,QK, n,m, k)
2: D ← RetrieveDocs(Q,E, n)
3: QK

sim ← RetrieveSimilarQuestion(Q,QK)
4: E ← ∅
5: for cada di ∈ D do
6: E ← E ∪ {Epre(di, Q

K
sim)} ▷ Embeddings precalculados de D para QK

sim

7: {c1, c2, . . . , ck} ← K-Means(E, k)
8: ∆← ∅
9: for j = 1 to m do

10: δj ← ∅
11: for l = 1 to k do
12: δj ← δj ∪ {SampleOne(cl)} ▷ Muestrear un documento de cada clúster cl

13: ∆← ∆ ∪ {δj}
14: Drafts← ∅
15: for all δj ∈ ∆ in parallel do
16: (αj , βj)←MDrafter.generate(Q, δj)
17: ρdraft

j ← PDrafter(βj | Q, δj) + PDrafter(αj | Q, δj)

18: ρself-contain
j ← PDrafter(αj , βj | Q, δj)

19: ρself-reflect
j ← PMVerifier(“Yes” | Q,αj , βj)

20: ρfinal
j ← ρdraft

j · ρself-contain
j · ρself-reflect

j

21: Drafts← Drafts ∪ {(αj , ρ
final
j )}

22: (Â,_)← arg max(αj ,ρfinal
j )∈Draftsρ

final
j ▷ Seleccionar el mayor score final

23: return Â

5.2. Experimentación y resultados de Efficient Speculative RAG

En la presente sección se exponen los detalles experimentales y los resultados obteni-
dos al evaluar la variante optimizada de Speculative Rag denominada Efficient Speculative
RAG. El diseño experimental que se detalla a continuación tiene como objetivo principal
cuantificar la ganancia en eficiencia (medida en términos de latencia) y, simultáneamente,
verificar que la calidad de las respuestas generadas por Efficient Speculative RAG se man-
tiene comparable a la del método base. Para ello, se describirá el setup experimental, la
implementación específica de los componentes críticos y los parámetros seleccionados, cul-
minando con un análisis comparativo de los resultados frente al Speculative RAG original.

5.2.1. Diseño de evaluación

Con el objetivo de evaluar empíricamente el rendimiento del método propuesto, se
diseñó un protocolo experimental que permite una comparación directa con el algoritmo
original de Speculative RAG [78]. Esta comparación se centra en dos aspectos clave: la
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latencia de inferencia y la precisión de las respuestas generadas. El propósito principal de la
evaluación es verificar que la eliminación del cómputo en línea de los embeddings instruidos
(elemento central de nuestra propuesta) no compromete la calidad de las respuestas, al
mismo tiempo que permite una mejora significativa en la latencia del sistema

La evaluación se fundamentó en el uso de datasets estándar de QA, donde cada ins-
tancia se modela como una tripleta (Q,A,E). En esta tupla, Q representa el conjunto de
preguntas del dataset, A el conjunto de respuestas consideradas correctas, y E el corpus
de documentos de evidencia del dataset que sirven como base de conocimiento para las
preguntas.

Protocolo de evaluación detallado

El procedimiento experimental seguido para el dataset (Q,A,E) de evaluación fue el
siguiente:

1. Preprocesamiento del corpus (fase offline para Efficient Speculative RAG):

Se aplicó KRAQ sobre el corpus E para generar un conjunto de preguntas
representativas QK = {QK

1 , . . . , QK
k }.

En un escenario ideal, la fase offline de Efficient Speculative RAG implicaría
el pre-cómputo exhaustivo de los embeddings instruidos. Específicamente, pa-
ra cada documento di del corpus E y para cada pregunta representativa QK

j

del conjunto QK generado por KRAQ, se calcularía y almacenaría el embed-
ding E(di | QK

j ) utilizando InBedder-RoBERTa, conformando así una tabla de
consulta Epre(di, Q

K
j ). No obstante, debido a las limitaciones temporales y de

recursos computacionales inherentes al desarrollo de esta tesis, este pre-cómputo
completo no fue factible. En su lugar, para poder evaluar tanto el impacto en
la latencia como la precisión del sistema utilizando los embeddings conceptual-
mente correctos (aquellos instruidos por QK

sim), se adoptó un procedimiento de
estimación, el cual se detalla en la Sección 5.2.4.

Este paso es exclusivo de la preparación para Efficient Speculative RAG y se realiza
una única vez por corpus.

2. Ejecución comparativa de algoritmos (Fase Online): Para cada pregunta de
referencia Q de la instancia actual, y utilizando los documentos del conjunto E como
base para la recuperación, se ejecutaron ambas versiones del algoritmo para generar
una respuesta Agen:

Speculative RAG (Original): Se recuperó un conjunto D de documentos de
E basado en Q. Luego, se calcularon los embeddings instruidos InBedder(di, Q)
para cada di ∈ D en tiempo de ejecución, utilizando Q como instrucción.

Efficient Speculative RAG: Se recuperó un conjunto D de documentos de E
basado en Q. Se seleccionó la pregunta representativa QK

sim ∈ QK más similar a
Q. Posteriormente, se utilizaron los embeddings precomputados Epre(di, Q

K
sim)

para el clustering de los documentos di ∈ D.

Ambas variantes procedieron luego con el muestreo de subconjuntos, la generación
de borradores y la verificación para producir sus respectivas Agen.
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3. Aplicación de métricas de evaluación: Para cada Agen obtenida por ambos mé-
todos, se comparó con la respuesta de referencia A utilizando las siguientes métricas:

Exact Match (EM): Se midió la coincidencia literal exacta entre Agen y A, tras
la normalización textual estándar.

Evaluación Semántica con LLM como Juez: Un LLM (Llama3.1-8b-instruct)
evaluó si Agen responde adecuadamente a Q de manera semánticamente equiva-
lente a A, siguiendo el protocolo detallado.

Estas dos métricas fueron explicadas de manera mas detallada en la Sección 4.2.1

4. Medición de latencia: Adicionalmente, se registró la latencia total de inferencia
para cada método. Esta medición abarcó todos los componentes del pipeline online:

Recuperación inicial de documentos (común a ambos).

Cómputo de embeddings instruidos (aplicable solo a Speculative RAG original).

Selección de QK
sim y estimacion de la recuperación de embeddings precompu-

tados (aplicable solo a Efficient Speculative RAG, estimación explicada en 5.2.4).

Clustering y generación de subconjuntos de documentos.

Generación de borradores y proceso de verificación final.

Esta evaluación comparativa busca proporcionar una base empírica sólida para validar
la hipótesis central de que Efficient Speculative RAG conserva la calidad de respuesta del
sistema original, al tiempo que elimina su principal cuello de botella computacional. De
confirmarse, esto abriría el camino hacia implementaciones más escalables y eficientes de
este avanzado paradigma de RAG en entornos de producción.

5.2.2. Cálculo de scores

La selección del borrador final en el pipeline de Speculative RAG, tanto en su versión
original como en la variante Efficient Speculative RAG, se fundamenta en una puntua-
ción combinada ρj para cada par de borrador de respuesta y racional (αj , βj). Confor-
me a lo explicado en la Sección 5.1.1, esta puntuación agrega tres componentes: ρdraft

j ,
ρself-contain
j y ρself-reflect

j . En nuestra implementación, estos elementos se derivaron de las
log-probabilidades de los tokens generados, obtenidas mediante el parámetro logprobs de
la API del cliente OpenAI en comunicación con el servidor vLLM.

Procesamiento inicial: segmentación de racional y respuesta El modelo MDrafter
fue instruido para producir una única secuencia textual que contiene tanto el racional βj
como la respuesta αj (detalles del formato JSON en Sección 5.2.5). Para discernir las log-
probabilidades correspondientes a cada segmento, se aplicó una heurística basada en la
identificación de subcadenas de tokens, tales como “ration” o “resp”. Una vez localizados
dichos marcadores, se delimitaron las subsecuencias de tokens Tβj

(para el racional) y Tαj

(para la respuesta), junto con sus respectivas log-probabilidades.

Consideraciones sobre la estabilidad numérica y definición de métricas de con-
fianza La formulación teórica de los scores en Wang et al. [78] se apoya en la probabilidad
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de secuencia completa, P (S). La probabilidad de una secuencia se estima como la produc-
toria de las probabilidades de sus tokens constituyentes: P (S) =

∏
t∈S P (t). Sin embargo,

en la práctica computacional, la multiplicación directa de un gran número de probabilida-
des (valores inherentemente menores que 1) conduce al conocido problema del underflow
numérico: el resultado se vuelve tan extremadamente pequeño que la precisión del compu-
tador no puede representarlo y colapsa a cero.

Dado que el servidor vLLM, utilizando el cliente de OpenAI, ya proporciona las log-
probabilidades (logprobs) de cada token, el cálculo de la probabilidad de secuencia P (S) se
realiza mediante la siguiente formulación, que transforma la productoria de probabilidades
en una suma en el espacio logarítmico:

P (S) = exp

(∑
t∈S

logprob(t)

)
.

No obstante, en nuestra implementación, esta formulación resultó insuficiente para
secuencias extensas como las generadas para los pares (αj , βj). La suma de un gran número
de log-probabilidades (que son negativas) producía un valor tan pequeño que, al aplicar
la exponencial, el score final colapsaba sistemáticamente a cero. Este colapso impide una
diferenciación efectiva entre los borradores, volviendo en la práctica aleatoria la selección.

Para esquivar esta limitación y asegurar la estabilidad numérica, se adoptó una métrica
de confianza, denotada Pconf(S), basada en la exponencial de la log-probabilidad promedio
de los tokens de la secuencia S generados por un modelo específico. Si S es una secuencia
de L tokens, esta métrica se define como:

Pconf(S) = exp

(
1

L

∑
t∈S

logprob(t)

)
.

Esta medida ofrece una cuantificación de la confianza normalizada por la longitud de la
secuencia y es considerablemente más robusta frente al underflow. Si bien representa una
desviación de la probabilidad de secuencia teórica usada en el paper original (donde no
se especifica cómo se manejó este problema), se consideró una aproximación pragmática y
necesaria para la viabilidad de la implementación.

Los tres componentes del score ρj se calcularon utilizando esta métrica Pconf, especifi-
cando el modelo correspondiente en cada caso:

Componentes del score

ρdraft
j (Puntuación del borrador): Refleja la confianza combinada del modelo MDrafter en

la generación del racional βj y la posterior respuesta αj :

ρdraft
j = PMDrafter(βj | Q, δj) + PMDrafter(αj | Q, δj , βj).

En nuestra implementación, estas probabilidades se aproximaron sumando las con-
fianzas Pconf de cada segmento:

ρdraft
j ≈ Pconf(Tβj

) + Pconf(Tαj ).

ρself-contain
j (Puntuación de auto-contención): Mide la coherencia interna del par (αj , βj),

representada por la probabilidad conjunta de que MDrafter genere ambos elementos
dado el contexto:

ρself-contain
j = PMDrafter(αj , βj | Q, δj).
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Esta probabilidad conjunta se estimó aplicando la métrica Pconf a la secuencia com-
pleta de tokens concatenados Tαj⊕βj

:

ρself-contain
j ≈ Pconf(Tαj⊕βj

).

ρself-reflect
j (Puntuación de auto-reflexión): Evalúa la confianza del modelo MVerifier en que

el racional βj soporta adecuadamente la respuesta αj . Teóricamente, es la probabili-
dad de que el verificador responda ”Yes”:

ρself-reflect
j = PMVerifier(”Yes” | Q,αj , βj).

Esta probabilidad se obtuvo de la confianza Pconf en la respuesta del verificador,
Averif, (ver Apéndice 7.6 para ver prompt exacto utilizado):

ρself-reflect
j ≈

{
Pconf(TAgen) si Agen = ”Yes”
1− Pconf(TAgen) si Agen = ”No”

Cálculo del score final combinado ρj Habiendo calculado cada componente como una
medida de confianza normalizada, el score final ρj para el borrador j se obtuvo mediante
su producto. Esta estructura es consistente con la propuesta por Wang et al. [78]:

ρj = ρdraft
j · ρself-contain

j · ρself-reflect
j .

Este producto asegura que cada dimensión de la calidad del borrador influya en la eva-
luación global. La respuesta αj asociada al ρj máximo fue seleccionada como la respuesta
definitiva Â:

Â = arg max
αj

(ρj).

Esta implementación, con sus adaptaciones para la estabilidad numérica, busca preservar
la funcionalidad esencial del mecanismo de scoring de Speculative RAG.

5.2.3. Paralelismo y estimación de latencia

Una de las ventajas conceptuales del algoritmo Speculative RAG [78], y por extensión
de nuestra variante Efficient Speculative RAG, es la capacidad de procesar los m subcon-
juntos de documentos δj en paralelo. Este paralelismo se aplica tanto a la generación de
los borradores de respuesta y racional (αj , βj) mediante los modelos MDrafter, como a la
evaluación de dichos borradores con el modelo MVerifier. Esta capacidad de ejecución en
paralelo es fundamental para mitigar el posible incremento en la latencia total que podría
suponer la generación y evaluación de múltiples candidatos de respuesta.

Debido a las limitaciones en los recursos computacionales disponibles para esta tesis
(específicamente, una única GPU NVIDIA GeForce RTX 3090), no fue factible implementar
una ejecución verdaderamente paralela de las m instancias de MDrafter y MVerifier. En su
lugar, los m subconjuntos de documentos fueron procesados de manera secuencial. Para
cada consulta qc del conjunto de prueba (donde c es el índice de la consulta) y para cada
uno de sus m subconjuntos de documentos δc,j :

1. Se generó el par (αc,j , βc,j) utilizando el modelo MDrafter, registrando el tiempo de
ejecución tdraft

c,j .
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2. Posteriormente, se evaluó este par con el modelo MVerifier para obtener el score
ρself-reflect
c,j (y las log-probabilidades necesarias para los otros componentes del sco-

re ρc,j), registrando el tiempo de ejecución tverify
c,j .

El tiempo total de esta fase de generación y verificación si se ejecutara de forma puramente
secuencial para los m borradores de una consulta qc, T

(c)
secuencial-gv, sería:

T
(c)
secuencial-gv =

m∑
j=1

(tdraft
c,j + tverify

c,j ).

Estimación de la latencia en un escenario paralelizado por consulta

Para estimar la latencia que se habría obtenido en un escenario con paralelismo ideal,
donde se dispone de suficientes recursos para procesar las m operaciones de drafting si-
multáneamente (y análogamente para las m operaciones de verificación) para una consulta
dada qc, se adoptó un enfoque común en la literatura [77]. Se asume que la latencia de una
etapa paralelizada está determinada por el tiempo de procesamiento de la tarea más lenta
dentro de ese conjunto de operaciones paralelas.

Específicamente, para una consulta qc, si tdraft
c,j es el tiempo registrado para generar

el j-ésimo borrador (de m borradores) y tverify
c,j es el tiempo para verificarlo, la latencia

estimada para la fase de drafting en paralelo para esa consulta es:

T
(c)
paralelo-draft = máx

j=1,...,m
(tdraft

c,j ). (5.2)

Y la latencia estimada para la fase de verificación en paralelo para esa consulta es:

T
(c)
paralelo-verify = máx

j=1,...,m
(tverify

c,j ). (5.3)

Dado que la verificación de un borrador (αc,j , βc,j) depende de su previa generación, y
asumiendo un pipeline donde, para una consulta qc, todas las generaciones de borradores
ocurren antes que todas las verificaciones (o que existe la capacidad de paralelizar ambas
etapas en su conjunto), la latencia total estimada para la fase combinada de generación y
verificación de los m borradores para esa consulta específica (T (c)

draft-verify) se calcula como
la suma de estas dos latencias máximas:

T
(c)
draft-verify = T

(c)
paralelo-draft + T

(c)
paralelo-verify. (5.4)

Cálculo de la latencia total agregada y representativa

Para obtener una medida general y robusta de la latencia por consulta para cada uno
de los algoritmos evaluados (Speculative RAG original y Efficient Speculative RAG), se
midieron los tiempos de ejecución de las diferentes etapas del pipeline para cada consulta
individual qc en el conjunto de datos de prueba. Estas etapas, medidas por consulta, son:

1. T
(c)
retrieve: Tiempo empleado en la recuperación inicial del conjunto de Nretrieved docu-

mentos relevantes desde el corpus para la consulta qc.

2. T
(c)
embed-cluster: Tiempo necesario para la etapa de obtención de embeddings y clustering

para la consulta qc.
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Para el Speculative RAG original: este tiempo incluye el cálculo en línea de los
embeddings instruidos E(di | Qc) y el siguiente clustering y muestreo.

Para Efficient Speculative RAG : este tiempo representa el costo de seleccionar la
pregunta QK

sim más similar a Qc, el costo (estimado) de recuperar los embeddings
precalculados Epre(di, Q

K
sim), y el costo del clustering y muestreo. La metodología

detallada para la medición y estimación de este componente en el contexto
de esta tesis, dada la ausencia de un pre-cómputo completo, se describe en la
Sección 5.2.4.

Esta etapa es donde Efficient Speculative RAG introduce su principal optimización
de latencia.

3. T
(c)
draft-verify: Tiempo estimado para generar y verificar los m borradores para la con-

sulta qc, utilizando la estimación de latencia paralela dada por la Ecuación 5.4.

4. T
(c)
select: Tiempo para calcular los scores finales ρc,j y seleccionar el mejor borrador

para la consulta qc. Esta etapa es generalmente muy rápida y de tiempo despreciable.

Una vez registradas estas mediciones (T (c)
retrieve, T

(c)
embed-cluster, T

(c)
draft-verify, T

(c)
select) para cada

una de las Nq consultas del conjunto de prueba, se calcula la mediana de los tiempos para
cada una de estas cuatro etapas a través de todas las Nq. El uso de la mediana en lugar
de la media aritmética proporciona una estimación más robusta de la tendencia central,
menos sensible a posibles valores atípicos (outliers) que podrían surgir debido a errores pro-
venientes de los modelos LLM como la generación inusual de borradores extremadamente
largos debido a bucles en la generacion. Denotemos estas medianas como med(Tretrieve),
med(Tembed-cluster), med(Tdraft-verify), y med(Tselect).

Por lo tanto, la latencia total representativa (Lmed
total) para procesar una consulta pro-

medio se calcula como la suma de estas medianas:

Lmed
total = med(Tretrieve) + med(Tembed-cluster) + med(Tdraft-verify) + med(Tselect). (5.5)

Al comparar Efficient Speculative RAG con el Speculative RAG original, la diferencia más
significativa en la latencia se espera en el componente med(Tembed-cluster). Para los de-
más componentes, especialmente med(Tdraft-verify), se utiliza la misma estimación paralela
(Ecuaciones 5.2 y 5.3) para asegurar una comparación equitativa del potencial de paraleli-
zación inherente al algoritmo. Los resultados detallados de estas mediciones y estimaciones
de latencia (basadas en la mediana) se presentarán y analizarán en la Sección 5.2.8.

5.2.4. Complejidad del pre-cómputo de embeddings instruidos en Effi-
cient Speculative RAG y su estimación

Una consideración importante para la viabilidad práctica de Efficient Speculative RAG
es la complejidad computacional asociada a la fase de pre-cómputo offline, donde se generan
y almacenan los embeddings instruidos Epre(di, Q

K
j ) (ver Ecuación 5.1).

Teóricamente, para un corpus con ND documentos (o chunks di) y un conjunto de NQ

preguntas representativas QK
j generadas por KRAQ, la complejidad de este pre-cómputo

sería del orden de O(ND ×NQ × Cemb), donde Cemb es el costo de generar un embedding
instruido para un par (documento, pregunta). Si tanto ND como NQ son grandes, este pro-
ceso puede ser considerablemente intensivo en tiempo y almacenamiento. Por ejemplo, para
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un corpus que resulta en 15, 000 chunks y un sistema KRAQ que genera 20, 000 preguntas
representativas (considerando diferentes niveles jerárquicos), se requerirían 300 millones de
inferencias del modelo de embeddings instruidos.

Hipótesis de optimización del pre-cómputo. Una hipótesis para mitigar esta com-
plejidad es que no sería necesario precomputar los embeddings instruidos para todos los
documentos del corpus con respecto a cada pregunta representativa QK

j . En su lugar, po-
dría ser suficiente precomputar Epre(di, Q

K
j ) solo para un subconjunto de los documentos

di que son más propensos a ser relevantes para QK
j . Por ejemplo, para cada QK

j , se podría
primero realizar una búsqueda semántica estándar (usando embeddings no instruidos, como
los de nomic-embed-text) para encontrar los Ms = 1000 documentos más similares a QK

j .
Luego, el pre-cómputo de los embeddings instruidos con InBedder-RoBERTa se limitaría a
estos Ms documentos para esa QK

j particular. Bajo esta optimización, la complejidad del
pre-cómputo se reduciría a aproximadamente O(NQ ×Ms × Cemb +NQ × Csearch), donde
Csearch es el costo de la búsqueda semántica inicial. Si Ms ≪ ND, esto podría representar
un ahorro sustancial, haciendo que la complejidad sea lineal con respecto al número de
preguntas representativas. No obstante, la validación de que un valor de Ms (como 1000)
es suficiente para no degradar el rendimiento del clustering posterior en Efficient Specula-
tive RAG resta como un trabajo futuro y no se exploró en esta tesis.

Manejo de la estimación de latencia en esta tesis. Debido a las limitaciones de
tiempo y recursos computacionales inherentes al desarrollo de esta tesis de licenciatura, no
fue factible realizar el pre-cómputo exhaustivo de todos los pares (di, QK

j ) para los datasets
y el volumen de preguntas generadas por KRAQ. Para poder, no obstante, obtener una
estimación fiel del rendimiento y la ganancia en latencia que Efficient Speculative RAG
ofrecería si el pre-cómputo se hubiera realizado, se adoptó la siguiente estrategia durante
la fase de experimentación online para esta variante:

1. Para una consulta de usuario Qc, se recuperó la pregunta representativa más similar
QK

sim (como se describe en la Sección 5.1.1). Se registró el tiempo de esta operación
de búsqueda de QK

sim, denotado como T
(c)
Qsim.

2. Luego, en lugar de buscar en una tabla precalculada Epre, se calcularon en ese mo-
mento los embeddings instruidos E(di | QK

sim) para los Nretrieved documentos di que
habían sido recuperados inicialmente para Qc. Se registró el tiempo T

(c)
online-emb que

tomó esta operación específica de generación de embeddings instruidos.

3. Posteriormente, se realizó el clustering K-Means sobre estos embeddings recién cal-
culados y el muestreo de los subconjuntos δc,j . Se registró el tiempo de esta fase de
clustering y muestreo como T

(c)
cluster-sample.

4. El resto del pipeline de Efficient Speculative RAG procedió utilizando los subconjun-
tos δc,j derivados.

5. Para estimar la latencia que Efficient Speculative RAG habría tenido con un pre-
cómputo ideal, el componente T

(c)
embed-cluster (referenciado en la Sección 5.2.3) se re-

construyó de la siguiente manera:
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El tiempo T
(c)
online-emb (cálculo de embeddings instruidos en línea) se excluyó, ya

que esta operación no ocurriría si los embeddings estuvieran precalculados.

Para simular el costo de acceder y recuperar los Nretrieved embeddings precalcula-
dos desde una base de datos, se utilizó el tiempo T

(c)
retrieve (tiempo de recuperación

inicial de los Nretrieved documentos) como un proxy conservador. Esta aproxi-
mación asume que recuperar Nretrieved vectores de embedding precalculados de
una base de datos tendría un costo comparable o inferior al de recuperar los
documentos originales.

Por lo tanto, el tiempo T
(c)
embed-cluster para Efficient Speculative RAG se estimó

como la suma de los componentes que sí ocurrirían en un escenario con pre-
cómputo:

T
(c)
embed-cluster ≈ T

(c)
Qsim + T

(c)
retrieve + T

(c)
cluster-sample.

Esta aproximación, si bien no representa un pre-cómputo real, permitió evaluar el impacto
en la precisión del sistema utilizando los embeddings conceptualmente correctos (aquellos
instruidos por QK

sim) y, simultáneamente, obtener una estimación razonable de la reducción
de latencia al eliminar el costoso cálculo en línea de los embeddings instruidos por la
consulta del usuario Qc (como lo hace el Speculative RAG original).

5.2.5. Fine-tuning de drafter

Siguiendo la metodología propuesta por Wang et al. [78] para el entrenamiento del
MDrafter, se procedió a realizar un finetuning. El objetivo era instruir al modelo para que,
dado un triplete (Q,D) (pregunta, documentos de contexto), generara no solo la respuesta
A, sino también una justificación E (rationale) que explicara cómo A se deriva de D. El
proceso de entrenamiento buscaba maximizar la verosimilitud PMDrafter(A,E | Q,D).

Para este fin, se utilizaron los mismos datasets empleados en el finetuning del generador
de preguntas de KRAQ (ver Sección 3.2.5): Dolly-v2 [13] y MusiQue [73]. Estos datasets
se procesaron para crear tripletas de entrenamiento (Q,D,RespuestaConcatenada), donde
RespuestaConcatenada incluía tanto la respuesta objetivo como una justificación sinteti-
zada (siguiendo un esquema similar al descrito en Wang et al. [78], Apéndice G, para la
generación de justificaciones, en este caso se uso el modelo GPT-4o para generar los ra-
cionales de entrenamiento). Se empleó el modelo LLaMA 3.1–8B Instruct como base, y el
entrenamiento se realizó con QLoRA bajo una configuración de hiperparámetros similar a
la detallada en la Sección 3.2.5 para el generador de KRAQ.

El entrenamiento mostró una convergencia adecuada, como se observa en la curva de
pérdida sobre el conjunto de validación (Figura 5.1).
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Fig. 5.1: Curva de pérdida en el conjunto de validación durante el proceso de finetuning del modelo
MDrafter.

A pesar de la aparente convergencia durante el entrenamiento (Figura 5.1), la evaluación
del rendimiento del MDrafter ajustado dentro del pipeline completo de Speculative RAG
arrojó resultados contraintuitivos. Como se muestra en la Tabla 5.1, el Drafter fine-tuneado
exhibió un rendimiento inferior en términos de la precisión final del sistema en comparación
con el uso directo del modelo LLaMA 3.1–8B Instruct (sin este fine-tuning específico para
la tarea de Drafter), tanto en la métrica de Exact Match como en la Evaluación con LLM
como Juez.

Tab. 5.1: Comparación de la precisión (EM % y LLM-as-judge % en TriviaQA) del sistema Specu-
lative RAG utilizando el modelo MDrafter con y sin ajuste fino específico para la tarea de
Drafter.

Variante de MDrafter EM LLM-as-judge
LLaMA 3.1–8B Instruct (sin fine-tuning) 77.6 82.0
LLaMA 3.1–8B Instruct (con fine-tuning) 71.6 76.0

Esta disminución en el rendimiento a través de ambas métricas es significativa. Por
ejemplo, en EM, la precisión cae de 77.6 % a 71.6 %, y en la evaluación con LLM como Juez,
de 82.0 % a 76.0 %. Tal reducción podría atribuirse a varios factores, incluyendo un posible
sobreajuste del modelo fine-tuneado a la forma específica de los racionales sintetizados
durante la creación del dataset de entrenamiento, lo que podría haber limitado su capacidad
de generalización o afectado negativamente su habilidad para generar la respuesta más
concisa o relevante. Otra posibilidad es que el proceso de fine-tuning con QLoRA, si bien
eficiente en recursos, no haya sido tan efectivo para esta tarea particular como lo habría
sido un fine-tuning completo de todos los pesos del modelo, como el que se realizó en el
trabajo original de Wang et al. [78].

Estrategia final: uso del modelo instruct con formato JSON

Dados los resultados de la Tabla 5.1, se tomó la decisión de no utilizar el modelo
MDrafter finetuneado para esta tarea. En su lugar, se optó por emplear el modelo LLaMA
3.1–8B Instruct (en su versión cuantizada AWQ, como se describe en la Sección 3.2.2) sin
ninguna modificación adicional de fine-tuning para la función de Drafter.
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Para asegurar que la salida del modelo Drafter contuviera de manera diferenciada la
respuesta (αj) y el racional (βj), y facilitar su posterior procesamiento para el cálculo de
scores, se instruyó al modelo para que generara su salida en un formato JSON estructurado.
Esto se logró incorporando la siguiente instrucción al final del prompt enviado al MDrafter:

Your response must be a valid JSON object with the following format:
{’’response’’: ’’your response here’’, ’’rationale’’: ’’your rationale here’’}

Esta aproximación permite aprovechar las robustas capacidades de seguimiento de ins-
trucciones del modelo LLaMA 3.1–8B Instruct para obtener la información requerida en
un formato parseable, sin incurrir en los costes de un fine-tuning adicional que, en este
caso, no demostró ser beneficioso. La extracción de αj y βj se realiza entonces mediante el
parseo del objeto JSON devuelto.

El prompt final para los borradores puede encontrarse en la Sección 7.5

5.2.6. Setup experimental para Efficient Speculative RAG

Para la evaluación de Efficient Speculative RAG y su comparación con el algoritmo
Speculative RAG original, se estableció una configuración experimental base, compartien-
do varios componentes y parámetros con los experimentos de Combined Retrieve RAG
(descritos en la Sección 4.2.2).

Componentes del pipeline RAG:

Modelos de generación y verificación: Tanto para la generación de borradores como
para la verificación final de respuestas se utilizó el modelo llama3.1-8b-instruct en
su versión cuantizada con AWQ. En el rol de Drafter (MDrafter), este modelo fue res-
ponsable de producir múltiples borradores y sus respectivos racionales, operando en
su versión instruct, sin ajustes adicionales mediante fine-tuning. Las razones detrás
de esta elección se discuten en detalle en la Sección 5.2.5. Por su parte, el mismo mo-
delo actuó como Verifier (MVerifier), encargado de evaluar dichos borradores. Ambos
modelos corriendo sobre un servidor vLLM. Los detalles técnicos de estas elecciones
se desarrollan en la Sección 3.2.2.

Modelo de embeddings: Para el clustering inicial de documentos en el Speculative RAG
original (cómputo online de E(di | Q)) y para la estimacion de la precomputación de
embeddings en Efficient Speculative RAG (cómputo offline de Epre(di, Q

K
j )), se utilizó

el modelo de embeddings instruidos InBedder-RoBERTa [59], tal como proponen
Wang et al. [78].

Para la recuperación inicial de documentos y la búsqueda de la pregunta de KRAQ
más similar (QK

sim), se empleó el modelo nomic-embed-text, gestionado mediante
QDrant, manteniendo la consistencia con otros módulos de la tesis (ver Sección 3.2.2.

Corpus documental: Para la evaluación de Efficient Speculative RAG (y su compara-
ción con nuestra implementación del Speculative RAG original), se utilizó como base
de conocimiento el mismo corpus de documentos de evidencia E (aproximadamente
5 millones de tokens por dataset, como se describe en la Sección 3.2.2) que fue proce-
sado previamente por el sistema KRAQ. Las preguntas de referencia (Q) utilizadas
para poner a prueba estos sistemas RAG se seleccionaron de los datasets originales,
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asegurándose de que los documentos de evidencia necesarios para responderlas estu-
vieran contenidos dentro de este corpus E. El número de preguntas de referencia de
cada dataset utilizadas para la evaluación específica de Efficient Speculative
RAG (y su contraparte) fue el siguiente:

TriviaQA: 300 preguntas.

HotPotQA: 300 preguntas.

BioASQ: 500 preguntas.

PubHealth: 600 preguntas (afirmaciones).

Nuevamente, la selección de el número de preguntas para estos experimentos se debió
a consideraciones pragmáticas sobre el tiempo disponible para la ejecución y análisis,
buscando una evaluación indicativa del rendimiento.

Parámetros elegidos para la experimentación

Para la evaluación comparativa de Efficient Speculative RAG y el Speculative RAG
original, se seleccionaron hiperparámetros específicos para cada dataset, buscando un equi-
librio entre la calidad de la respuesta y la eficiencia. Estos parámetros clave, que definen
el comportamiento del componente de drafting y verificación, son: Nretrieved (número de
documentos recuperados), k (número de clústeres, que también corresponde al número
de documentos en cada subconjunto δj), y m (número de subconjuntos de documentos o
borradores generados en paralelo). Los valores utilizados para cada dataset se detallan a
continuación:

BioASQ: Se configuró con Nretrieved = 18 documentos iniciales, k = 5 documentos
por subconjunto de borrador (y, por lo tanto, 5 clústeres), y se generaron m = 10
borradores.

HotPotQA: Se emplearon Nretrieved = 10 documentos, k = 4 documentos por sub-
conjunto, y m = 8 borradores.

TriviaQA: Se utilizaron Nretrieved = 10 documentos, k = 2 documentos por subcon-
junto, y m = 5 borradores.

PubHealth: Similar a TriviaQA, se configuró con Nretrieved = 10 documentos, k = 2
documentos por subconjunto, y m = 5 borradores.

Estos parámetros se mantuvieron constantes para ambas variantes del algoritmo (original
y modificado) en cada dataset respectivo, con el fin de asegurar una comparación justa
de su rendimiento en términos de precisión y latencia. Los demás componentes, como los
modelos MDrafter y MVerifier, se mantuvieron como se describió en la Sección 5.2.6.

5.2.7. Resultados

Los resultados obtenidos para los cuatro datasets se resumen en la Tabla 5.2
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Tab. 5.2: Comparación de rendimiento entre nuestra implementación de Speculative RAG (deno-
minada ”Original (V.Propia)”) y la variante Efficient Speculative RAG en términos de
Precisión (Exact Match - EM y Evaluación con LLM como Juez - LLM-as-judge, en %)
y Latencia Estimada (segundos).

Dataset EM (%) LLM-Juez (%) Latencia (s)
Original

(V. Propia) Efficient Original
(V. Propia) Efficient Original

(V. Propia) Efficient

HotPotQA 44.3 44.0 48.3 49.0 3.01 2.93
TriviaQA 77.6 75.3 82.0 82.0 3.91 3.51
PubHealth 58.3 58.0 58.3 58.0 3.81 3.36
BioASQ 51.4 50.6 56.6 56.4 4.32 3.97

5.2.8. Análisis de resultados

Análisis de la precisión de respuesta. El análisis de la precisión de las respuestas
generadas revela un panorama altamente competitivo para Efficient Speculative RAG, con
un rendimiento generalmente muy cercano al de nuestra implementación del Speculative
RAG Original.

Al evaluar la corrección semántica y factual mediante el LLM como Juez, se observa
que Efficient Speculative RAG obtiene un ligero incremento en la puntuación para Hot-
PotQA (49.0 % frente al 48.3 % del Original), mientras que en TriviaQA ambas variantes
alcanzan un rendimiento idéntico del 82.0 %. Para PubHealth, el Original presenta una
mínima ventaja (58.3 % vs. 58.0 %), y en BioASQ, esta diferencia marginal a favor del
Original se mantiene (56.6 % vs. 56.4 %). Estos resultados, con diferencias mínimas entre
ambas arquitecturas, sugieren que la aproximación de utilizar la pregunta de KRAQ más
similar (QK

sim) como proxy para la pregunta del usuario (Q) en la selección de embeddings
precalculados es, en general, capaz de preservar la calidad semántica de las respuestas a un
nivel prácticamente indistinguible del método Original, que utiliza embeddings instruidos
directamente por Q.

En cuanto a la métrica de Exact Match, que evalúa la coincidencia literal, nuestra
implementación del Speculative RAG Original tiende a obtener puntuaciones ligeramente
superiores de manera consistente. Para HotPotQA, el Original es marginalmente superior
(44.3 % vs. 44.0 %). En TriviaQA, la diferencia es más notable, con el Original alcanzando
un 77.6 % frente al 75.3 % de Efficient Speculative RAG. En PubHealth, el Original también
lidera por un estrecho margen (58.3 % vs. 58.0 %). Similarmente, en BioASQ (utilizando
el método de EM modificado descrito en la Sección 4.2.3), el Original obtiene un 51.4 %
frente al 50.6 % de Efficient Speculative RAG. Esta tendencia podría indicar que el uso de
embeddings instruidos directamente por la pregunta del usuario Q guía el clustering de una
manera que favorece marginalmente la producción de respuestas que coinciden de forma
más literal con las referencias, en comparación con el uso de QK

sim como proxy. No obstante,
es importante destacar que las diferencias en EM son generalmente pequeñas, sugiriendo
que la pérdida de precisión literal al optar por la variante Efficient es limitada.
Análisis de la latencia de inferencia. La principal motivación detrás de Efficient Spe-
culative RAG es la reducción de la latencia de inferencia. Los resultados presentados en la
Tabla 5.2 validan consistentemente esta hipótesis a través de todos los datasets evaluados.
Específicamente, la latencia con Efficient Speculative RAG se reduce de 3.01s a 2.93s en
HotPotQA, lo que representa una mejora del 2.66%. Para TriviaQA, la latencia dismi-
nuye de 3.91s a 3.51s, marcando una reducción del 10.23%. En PubHealth, la mejora es
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aún más pronunciada, con una caída de 3.81s a 3.36s, equivalente a una disminución del
11.81%. Finalmente, en BioASQ, la latencia desciende de 4.32s a 3.97s, lo que se traduce
en una mejora del 8.10%. Estas mejoras son atribuibles directamente a la eliminación
del costoso cálculo en línea de los embeddings instruidos E(di | Q) para cada documento
recuperado, reemplazándolo por la recuperación (estimada) de embeddings precalculados
Epre(di, Q

K
sim). Este hallazgo es particularmente relevante para aplicaciones que requieren

respuestas rápidas y operan bajo restricciones de recursos computacionales.
Conclusión del análisis y balance precisión-eficiencia. En conjunto, Efficient Specu-
lative RAG se presenta como una alternativa optimizada y eficaz a nuestra implementación
de Speculative RAG. Logra reducciones consistentes y, en algunos casos, significativas en
la latencia de inferencia en todos los datasets evaluados. Simultáneamente, mantiene un
nivel de precisión de respuesta que, si bien puede ser marginalmente inferior en la métrica
de Exact Match, es altamente competitivo y prácticamente idéntico en términos de calidad
semántica evaluada por LLM como Juez. La ligera disminución observada en las puntua-
ciones de EM puede considerarse un trade-off aceptable y, en muchos casos, despreciable,
frente a las significativas ganancias obtenidas en eficiencia. Esta reducción de latencia, que
varía entre el 2.7 % y el 11.8 % según el dataset, puede ser crucial para la implementación
de sistemas RAG en entornos de producción o con alta demanda. La efectividad de Effi-
cient Speculative RAG subraya el potencial de utilizar preguntas representativas generadas
por KRAQ para optimizar operaciones costosas en pipelines de RAG complejos.

5.2.9. Estudios de ablación

Para los estudios de ablación presentados en esta sección, se utilizó la misma cantidad
de preguntas de referencia de los datasets que en los experimentos principales de Efficient
Speculative RAG, con el fin de asegurar la comparabilidad.

Impacto del modelo generador de preguntas de KRAQ

Para investigar la sensibilidad de Efficient Speculative RAG a la calidad de las preguntas
representativas QK utilizadas para la selección de embeddings precalculados, se realizó el
siguiente estudio de ablación. Este estudio se centró en variar el método de generación
de las preguntas de KRAQ, manteniendo el resto del pipeline de Efficient Speculative
RAG constante. Se evaluó el impacto en la precisión final del sistema utilizando el dataset
TriviaQA, mediante las métricas de Exact Match y Evaluación con LLM como Juez.

Las variantes del generador de preguntas de KRAQ consideradas fueron las mismas
que en la evaluación de KRAQ (ver Sección 3.2.7):

1. Efficient (Fine-tuned KRAQ): Utiliza el modelo generador de preguntas de KRAQ
fine-tuneado específicamente para la tarea, como se describe en la Sección 3.2.5. Esta
es la configuración estándar de Efficient Speculative RAG en los resultados principa-
les.

2. Efficient (Instruct KRAQ): Utiliza el modelo LLaMA 3.1–8B Instruct (sin el fine-
tuning de KRAQ) para generar preguntas a partir de los resúmenes comunitarios.

3. Efficient (Random KRAQ): Utiliza el baseline que genera preguntas a partir de
chunks seleccionados aleatoriamente del corpus (Sección 3.2.3).
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Los resultados de precisión en TriviaQA para estas variantes se presentan en la Tabla 5.3.

Tab. 5.3: Impacto del método de generación de preguntas de KRAQ en la precisión (EM% y LLM-
as-judge %) de Efficient Speculative RAG en el dataset TriviaQA.

Variante del Generador de EM LLM-as-judge
Preguntas de KRAQ
Efficient (Fine-tuned KRAQ) 75.33 82.00
Efficient (Random KRAQ) 73.33 81.00
Efficient (Instruct KRAQ) 73.00 77.00

Análisis. Los resultados del estudio de ablación, presentados en la Tabla 5.3, indican que
la calidad y el método de generación de las preguntas de KRAQ tienen un impacto directo
y significativo en el rendimiento de Efficient Speculative RAG.

El uso del modelo de KRAQ con fine-tuning específico (Efficient Fine-tuned KRAQ)
demuestra ser consistentemente superior, alcanzando la mayor precisión tanto en EM
(75.33 %) como en la evaluación con LLM como Juez (82.00 %). Esto sugiere que las pregun-
tas más relevantes permiten una selección más adecuada de los embeddings precalculados
Epre(di, Q

K
sim). Una QK

sim de mayor calidad, que se asemeja más en intención y contenido
a la pregunta real del usuario Q, resulta en un clustering de documentos más pertinente
para la pregunta original. Esta mejor agrupación, a su vez, impacta positivamente en la
calidad de los borradores generados y, consecuentemente, en la precisión de la respuesta
final.

Cuando se utilizan preguntas generadas por el método Random KRAQ (Efficient
Random KRAQ), que se derivan de chunks aleatorios, la precisión en EM disminuye a
73.33 % y en LLM-Juez a 81.00 %. Aunque estas preguntas provienen directamente del
corpus, carecen del análisis estructural y la síntesis temática que KRAQ introduce.

La variante que utiliza el modelo Instruct KRAQ (Efficient Instruct KRAQ), es decir,
el modelo LLaMA 3.1–8B Instruct aplicado a los resúmenes comunitarios de GraphRAG
sin el fine-tuning específico de KRAQ, muestra el rendimiento más bajo: 73.00 % en EM y
77.00 % en LLM-Juez. Esto subraya que, si bien los resúmenes comunitarios proporcionan
una buena base, el modelo de lenguaje necesita ser específicamente adaptado para transfor-
mar estos resúmenes en preguntas que sean efectivas para guiar la selección de embeddings
en el contexto de Efficient Speculative RAG.

Impacto del número de documentos recuperados en la latencia

Para investigar más a fondo el beneficio en latencia de Efficient Speculative RAG,
especialmente en escenarios donde el costo del cálculo de embeddings instruidos en línea
podría ser más pronunciado, se realizó un estudio de ablación adicional. En este estudio, se
varió el número de documentos recuperados inicialmente (Nretrieved) antes de la etapa de
clustering, mientras se mantenían fijos otros parámetros del algoritmo Speculative RAG.

Específicamente, para el dataset HotPotQA, se fijó el número de clústeres (y, por ende,
el número de documentos por subconjunto de borrador) en k = 3 y el número de borra-
dores generados en m = 8. Luego, se comparó la latencia de inferencia estimada (según
la Ecuación 5.5) entre nuestra implementación del Speculative RAG Original y la variante
Efficient Speculative RAG para diferentes valores de Nretrieved ∈ {10, 15, 20}.
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La hipótesis era que, al aumentar Nretrieved, el costo de calcular los embeddings instrui-
dos en línea para el Speculative RAG Original se incrementaría de mayor manera que el
costo (estimado) de recuperar un mayor número de embeddings precalculados en Efficient
Speculative RAG, resultando en una mayor diferencia de tiempo ahorrado a favor de la
variante eficiente. Los resultados de latencia obtenidos se presentan en la Figura 5.2.

Fig. 5.2: Impacto del número de documentos recuperados inicialmente (Nretrieved) en la latencia.

Análisis de los resultados del estudio de ablación. Los resultados presentados en la
figura 5.2 confirman la hipótesis planteada. A medida que aumenta el número de docu-
mentos recuperados inicialmente (Nretrieved), la ventaja en latencia de Efficient Speculative
RAG sobre el Speculative RAG Original se vuelve más pronunciada:

Con Nretrieved = 10, la reducción de latencia es del 2.7 %..

Al aumentar a Nretrieved = 15, la reducción de latencia se incrementa al 3.5 %.

Con Nretrieved = 20, la variante eficiente logra una reducción de latencia del 7.4 %.
Notablemente, la latencia de Efficient Speculative RAG se mantiene prácticamente
constante (2.93s a 2.99s) incluso al duplicar el número de documentos iniciales de
10 a 20, mientras que la latencia del Speculative RAG Original aumenta de 3.01s a
3.23s.

Este comportamiento es el esperado: el costo principal para Efficient Speculative RAG en
la etapa de T

(c)
embed-cluster (después de la selección de QK

sim) radica en la recuperación de los
embeddings precalculados y el subsiguiente clustering y muestreo. Si bien la recuperación
de más embeddings precalculados tiene un costo, este es presumiblemente menor y más
constante que el costo de generar en línea un mayor número de embeddings instruidos con
un modelo como InBedder-RoBERTa, como debe hacer el Speculative RAG Original.

Este estudio de ablación marca la escalabilidad de la ventaja en latencia de Efficient
Speculative RAG, particularmente en escenarios donde se podría considerar recuperar un
conjunto inicial más grande de documentos con el fin de capturar una mayor diversidad de
perspectivas. La capacidad de Efficient Speculative RAG de mantener una latencia relati-
vamente estable en la etapa de T

(c)
embed-cluster al variar Nretrieved es una ventaja significativa.
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6.1. Conclusiones

En la presente tesis se investigó y desarrolló una nueva metodología denominada KRAQ
(Knowledge-graph Representative Automatic Questions), con el principal objetivo de opti-
mizar los sistemas RAG. Este esfuerzo se originó como respuesta a las limitaciones reco-
nocidas de los LLMs, como su conocimiento estático, su propensión a las alucinaciones y
su sesgo de posición, así como a los desafíos en los sistemas RAG, que incluyen la consi-
derable carga computacional y la frecuente recuperación de información con alta similitud
superficial pero baja diversidad semántica.

La propuesta central de KRAQ se articuló en torno a la hipótesis de que un conjunto
de preguntas representativas de un corpus, generado de manera informada y estructurada,
podría actuar como un activo para mejorar los pipelines de RAG. Para ello, KRAQ se
diseñó para capturar la estructura semántica de un corpus documental mediante la cons-
trucción de un grafo de conocimiento. Sobre este grafo, se aplicaron algoritmos de detección
de comunidades para identificar agrupaciones temáticas cohesivas, a partir de las cuales
se generaron resúmenes textuales. El componente innovador de KRAQ radica en la trans-
formación de estos resúmenes comunitarios en un conjunto de preguntas representativas,
utilizando para ello un modelo de lenguaje (fine-tuneado).

La evaluación experimental de KRAQ demostró su eficacia. Al comparar las pregun-
tas generadas con aquellas de referencia en datasets estándar como TriviaQA, HotPotQA,
BioASQ y PubHealth, se constató que KRAQ alcanzó niveles de relevancia semántica (me-
didos con Relevance y Relevance@τ , metricas basadas en BERTScore) significativamente
superiores a los de un baseline que genera preguntas a partir de fragmentos aleatorios del
corpus. Es crucial destacar que KRAQ, con su modelo fine-tuned, también superó consis-
tentemente a una variante que utilizaba el mismo pipeline de resúmenes comunitarios pero
empleaba un modelo de lenguaje instruct-tuneado sin ajuste específico para la generación
de preguntas. Esto subraya el valor del fine-tuning para alinear el modelo generador con
la tarea de producir preguntas temáticamente representativas a partir de los resúmenes.

Las contribuciones prácticas de esta tesis se materializaron a través de dos aplicaciones
directas de las preguntas generadas por KRAQ, ambas orientadas a mitigar limitaciones
específicas de los sistemas RAG:

1. Combined Retrieve RAG: Se propuso un algoritmo de recuperación que enrique-
ce la consulta original del usuario con preguntas similares generadas por KRAQ, con
el fin de diversificar el conjunto de documentos recuperados. Los experimentos en
esta línea mostraron mejoras consistentes en la precisión de las respuestas. Específi-
camente, se observaron incrementos de hasta un 3 % en la métrica de Exact Match
y mejoras generalizadas en la evaluación semántica mediante LLM como Juez. Estos
resultados sugieren que la diversificación contextual, guiada por preguntas temática-
mente relevantes y estructuralmente derivadas, beneficia la calidad de la generación
final.

2. Efficient Speculative RAG: Se desarrolló una optimización para el framework
Speculative RAG, donde las preguntas de KRAQ se emplearon para permitir el pre-
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cómputo de los embeddings instruidos, un componente que representa un cuello de
botella computacional en el algoritmo original. Las pruebas experimentales indica-
ron una reducción notable en la latencia de inferencia, alcanzando hasta un 10 % de
disminución, sin una disminución significativa en la calidad de las respuestas. Es-
te hallazgo es prometedor para la implementación de sistemas RAG avanzados en
entornos con alta demanda.

Los estudios de ablación realizados reforzaron la tesis de que la calidad intrínseca de
las preguntas generadas por KRAQ y la especificidad del fine-tuning del modelo generador
son determinantes para el éxito de las optimizaciones propuestas.

En síntesis, esta tesis aporta evidencia empírica de que la integración de grafos de
conocimiento como base para una generación automática de preguntas representativas
constituye una estrategia efectiva y prometedora. KRAQ no solo se presenta como una
herramienta para la condensación y representación del conocimiento de un corpus, sino
que se establece como un componente funcional capaz de mejorar el rendimiento de los
sistemas RAG, abriendo nuevas vías hacia la construcción de sistemas RAG más precisos
y eficientes..

6.2. Trabajos futuros

Los resultados y la metodología desarrollada en esta tesis abren diversas líneas de inves-
tigación y desarrollo futuro que podrían expandir y refinar las contribuciones presentadas:

1. Optimización de KRAQ:

Explorar el uso de los ”findings” o afirmaciones detalladas generadas por Graph-
RAG (además de los resúmenes comunitarios) y de otras caracteristicas del grafo
de conocimiento (como las propias entidades de una comunidad) como entrada
para el modelo generador de preguntas, buscando preguntas más específicas.

Investigar el impacto de diferentes algoritmos de detección de comunidades en
la calidad y representatividad de las preguntas finales.

Experimentar con modelos de lenguaje de mayor capacidad para la tarea de
generación de preguntas a partir de resúmenes.

2. Mejoras en Combined Retrieve RAG:

Desarrollar estrategias más sofisticadas para la selección y ponderación de las
preguntas de KRAQ en la recuperación combinada, por ejemplo, adaptando
dinámicamente el número de preguntas (n) o la proporción (α) en función de la
complejidad o ambigüedad de la consulta del usuario.

Integrar mecanismos de re-ranking de los documentos recuperados que consi-
deren tanto la similitud con la pregunta original como con las preguntas de
KRAQ.

Investigar como podría utilizarse la jerarquía de las preguntas (en relación al
nivel de la comunidad con la que fueron generadas) para optimizar el RAG tra-
dicional.
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3. Optimización y expansión de Efficient Speculative RAG:

Investigar estrategias para la optimización del pre-cómputo de embeddings ins-
truidos. Esto incluye validar empíricamente la viabilidad de un pre-cómputo
selectivo, donde solo se generen embeddings instruidos por una pregunta de
KRAQ (QK

j ) para un subconjunto de documentos del corpus que sean semánti-
camente más afines a QK

j (e.g., los Ms más relevantes). El objetivo sería reducir
drásticamente el costo del pre-cómputo sin afectar negativamente la calidad del
clustering y la respuesta final.

4. Nuevas aplicaciones de las preguntas de KRAQ:

Utilizar el conjunto de preguntas de KRAQ como base para la generación au-
tomática de datasets de entrenamiento para sistemas de QA específicos a un
corpus.

Desarrollar herramientas de exploración de corpus donde las preguntas de KRAQ
actúen como puntos de entrada o sugerencias para la navegación temática.
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7.1. Prompt para la Síntesis de Resúmenes Comunitarios (Etapa g)

El siguiente prompt se utilizó con un modelo LLM (GPT-4o) para generar resúmenes
temáticos R a partir de una pregunta de referencia Q y un conjunto de evidencia E. El
objetivo era obtener un resumen del contenido de E sin revelar Q.

Given this evidence and knowing that we want to generate a question about
{target_question}, create a community-style summary that:
1. Begins with ’’This community centers around...’’ or ’’This community focuses on...’’
2. Describes the main group, organization, or topic that connects the entities
3. Lists key members, figures, or elements in the community
4. Emphasizes relationships and connections between these elements
5. IMPORTANT: Do not reference or hint at the specific question that will be asked
6. Make the summary concise, maximum 5 sentences.

Follow this style:
Example: ’’This community centers around the Order of the Phoenix, a secret
organization in the Harry Potter series dedicated to combating dark forces,
particularly Voldemort and his followers. Key members include Harry Potter,
Kingsley Shacklebolt, Alastor Moody, and Nymphadora Tonks. The relationships
among these characters highlight their collaborative efforts against dark magic,
notable events such as battles against the Death Eaters, and the complexities
of their interactions, including issues of trust and loyalty.’’

For the given evidence, create a similar community-focused summary that
describes the entities and their relationships without revealing the
specific question that will be asked:

Evidence:
{evidence}

Donde {target_question} era reemplazado por la pregunta Q y {evidence} por el texto
de evidencia E.

7.2. Prompt para la Generación de Preguntas (Modelo fθ)

Este prompt se utilizó como plantilla para el fine-tuning del modelo LLaMA 3.1–8B
Instruct y para la inferencia. El objetivo es generar una pregunta natural Qgen a partir de
un resumen comunitario R.

Given this summary of a document collection, generate a natural question that a
person might ask when looking for this information. The question should be:

- Simple and straightforward
- Written in conversational language
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- Focused on the main topic or event
- Something a real person would ask when searching for information

Now generate a question for this summary:
{summary}

Durante el fine-tuning, {summary} era reemplazado por el resumen R generado en la etapa
anterior, y la respuesta esperada (del rol assistant) era la pregunta original Q. Para la
inferencia, solo se proporciona el prompt con el resumen, y el modelo genera la pregunta.
La estructura de datos para el entrenamiento seguía el formato:

{
’’messages’’: [

{’’role’’: ’’user’’, ’’content’’: ’’PROMPT_CON_SUMMARY_INSERTADO’’},
{’’role’’: ’’assistant’’, ’’content’’: ’’PREGUNTA_OBJETIVO’’}

]
}

7.3. Prompt para la Generación de Preguntas del Baseline de KRAQ

El siguiente prompt se utilizó con un LLM para generar una pregunta a partir de la
concatenación de m fragmentos (chunks) de texto seleccionados aleatoriamente del cor-
pus. Este proceso constituye el baseline para la evaluación de la calidad de las preguntas
generadas por KRAQ, como se describe en la Sección 3.2.3 y el Algoritmo 3.

Given these random fragments, generate a natural, concise question that someone
might ask about the themes or topics present in these passages. The question
should:
- Be short and to the point
- Focus on a common theme or interesting connection between the fragments
- Be something a real person would naturally ask
- Not be too complex or academic

Fragments:
{combined_content}

Generate only ONE concise question:

Donde {combined_content} era reemplazado por el texto resultante de la concatenación
de los m chunks aleatorios. El objetivo era que el LLM generara una única pregunta concisa
basada en el contenido agregado de estos fragmentos.

7.4. Prompt para la Generación de Respuestas en Sistemas RAG

El siguiente prompt base se utilizó para instruir al LLM generador (Llama-3.1-8B-
Instruct en esta tesis) en la etapa final de los diferentes pipelines RAG evaluados (e.g., RAG
Tradicional, Combined Retrieve RAG, y como modelo MVerifier o MDrafter con adaptaciones
en Speculative RAG). El objetivo era que el LLM generara una respuesta a la consulta del
usuario, utilizando el contexto recuperado como evidencia.
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Below is an instruction that describes a task. Write a response using the
evidence provided for it and state your explanation supporting your response.

### Evidence:
{context}

### Instruction:
{query}

Donde los placeholders se reemplazaban de la siguiente manera:

{context}: Se insertaba el conjunto de documentos o fragmentos de texto D que
fueron recuperados por el componente retriever del sistema RAG. Estos documentos
se concatenaban para formar un único bloque de texto contextual.

{query}: Se insertaba la pregunta original Q formulada por el usuario (o la pregunta
de referencia del dataset en el contexto experimental).

Se esperaba que el LLM utilizara la ”Evidence” (el contexto recuperado) para responder a la
”Instruction” (la consulta), y la instrucción adicional de ”state your explanation supporting
your response” tenía como objetivo fomentar respuestas más fundamentadas, aunque el
análisis principal de esta tesis se centró en la respuesta directa y no en la calidad de la
explicación generada, salvo en el contexto específico del cálculo de scores para Speculative
RAG donde los ”racionales” juegan un papel. La respuesta directa del modelo a la consulta
{query} se consideró como Agen.

7.5. Prompt para la Generación de Borradores (MDrafter) en Speculative
RAG

El siguiente prompt se utilizó para instruir al modelo MDrafter (Llama-3.1-8B-Instruct
en esta tesis, como se detalla en la Sección 5.2.5) dentro del framework Speculative RAG.
El objetivo era que el modelo, dada una instrucción (pregunta) y un conjunto de evidencia
(subconjunto de documentos δj), generara tanto una respuesta candidata (αj) como una
justificación o racional (βj) que la respaldara. La salida se solicitó en formato JSON para
facilitar su posterior procesamiento (Explicación de la razón de esto en la Sección 5.2.5).

Response to the instruction. Also provide a concise rationale that justifies the
response.

### Instruction:
{instruction}

### Evidence:
{evidence}

Your response must be a valid JSON object with the following format:
{{’’response’’: ’’your response here’’, ’’rationale’’: ’’your rationale here’’}}

Donde los placeholders se reemplazaban de la siguiente manera:
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{instruction}: Se insertaba la pregunta original del usuario Q (o la pregunta de
referencia del dataset en el contexto experimental).

{evidence}: Se insertaba el subconjunto de documentos δj (muestreado a partir de
los clústeres de documentos recuperados) que debía servir como base para la respuesta
y la justificación.

El modelo MDrafter debía generar un objeto JSON que contuviera dos claves: ”response”
(mapeada a αj) y ”rationale” (mapeada a βj). Esta estructura permitía una extracción
sencilla de ambos componentes para su uso en el cálculo de los scores de Speculative RAG.

7.6. Prompt para el Modelo Verificador (MVerifier) en Speculative RAG

En el framework Speculative RAG (tanto en la versión original implementada como en
Efficient Speculative RAG), el modelo verificador (MVerifier) juega un papel crucial en la
evaluación de los borradores de respuesta y sus justificaciones (racionales) generados por
el modelo MDrafter. Este proceso de verificación contribuye al cálculo del score ρself-reflect

j

(ver Sección 2.2.3).
El siguiente prompt se utilizó para instruir al modelo MVerifier (Llama-3.1-8B-Instruct

en esta tesis):

Instruction: {instruction}

Response: {response}

Rationale: {rationale}

Is the rationale good enough to support the answer?

You must respond with only a single word: ’’Yes’’ or ’’No’’.
Do not include any explanation or additional text.

Donde los placeholders se reemplazaban de la siguiente manera:

{instruction}: Se insertaba la pregunta original del usuario Q (o la pregunta de
referencia del dataset).

{response}: Se insertaba el borrador de respuesta αj generado por el modelo MDrafter.

{rationale}: Se insertaba la justificación o racional βj generado por el modelo
MDrafter para acompañar a αj .

Se esperaba que el modelo MVerifier evaluara si el {rationale} proporcionado era un so-
porte adecuado y suficiente para la {response} en el contexto de la {instruction}. La
respuesta del MVerifier (restringida a ”Yes” o ”No”) y las log-probabilidades asociadas a es-
ta respuesta se utilizaban luego para calcular el componente ρself-reflect

j del score final del
borrador.
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7.7. Prompt para la Evaluación con LLM como Juez

Para la evaluación de la calidad semántica y factual de las respuestas generadas por
los sistemas RAG, se empleó un LLM como juez. El siguiente prompt fue proporcionado
al LLM (Llama-3.1-8B-Instruct en esta tesis) para cada instancia de evaluación, como se
describe en la Sección 4.2.1.

You are an expert evaluator for question answering systems. Your task is to
determine if the generated answer correctly responds to the question according
to the reference answer.

Question: {question}
Generated Answer: {generated_answer}
Reference Answer: {reference_answer}

The reference answer represents the truth. The generated answer must match the
meaning of the reference answer to be considered correct. If the generated
answer is more specific but the core meaning is the same, it is also
considered correct.

Respond with ONLY a single digit:
1 - CORRECT:
0 - INCORRECT:

Your verdict (just the digit 1 or 0):

Donde los placeholders se reemplazaban de la siguiente manera:

{question}: Se insertaba el texto de la pregunta de referencia Q del dataset.

{generated_answer}: Se insertaba el texto de la respuesta Agen producida por el
sistema RAG evaluado.

{reference_answer}: Se insertaba el texto de la respuesta de referencia A del data-
set.

El LLM-Juez debía responder únicamente con el dígito ”1” si consideraba que la respuesta
generada era correcta y semánticamente equivalente a la respuesta de referencia, o con ”0”
en caso contrario. La proporción de respuestas ”1” sobre el total de instancias evaluadas
constituyó la puntuación de la métrica LLM-como-Juez.
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