A & Bl
& FACULTAD

S e
CIENCIAS EXACTAS
Y NATURALES

UNIVERSIDAD DE BUENOS AIRES
FACULTAD DE CIENCIAS EXACTAS Y NATURALES

Generaciéon automatica de preguntas basada
en grafos de conocimiento para optimizacién
de sistemas de recuperaciéon aumentada

Tesis de Licenciatura en Ciencias de Datos

Teo Gutter

Director: Luciano Del Corro
Buenos Aires, 2025






GENERACION AUTOMATICA DE PREGUNTAS BASADA EN
GRAFOS DE CONOCIMIENTO PARA OPTIMIZACION DE
SISTEMAS DE RECUPERACION AUMENTADA

Los sistemas de Generaciéon por Recuperacion Aumentada (RAG) permiten a los grandes
modelos de lenguaje (LLMs) acceder a informacion externa en tiempo real, superando asi
las limitaciones impuestas por su propio entrenamiento, como la dificultad para controlar
con exactitud qué informacién conoce el modelo. Este enfoque no solo mejora significati-
vamente la calidad de las respuestas generadas por asistentes basados en LLMs, sino que
también permite incorporar conocimiento especifico, confidencial o ausente en su entrena-
miento. Como consecuencia, los sistemas RAG se estdn adoptando de manera cada vez
maés extendida y horizontal en la industria.

Los sistemas basados en RAG, sin embargo, enfrentan desafios significativos relacio-
nados con la latencia y el costo computacional. Ademaés, estos sistemas suelen recuperar
documentos que presentan alta similitud superficial pero baja diversidad seméantica, lo que
reduce la cobertura del contexto relevante y limita la capacidad del modelo para generar
respuestas completas y bien fundamentadas.

Para mitigar estas limitaciones, esta tesis presenta KRAQ (Knowledge-graph Represen-
tative Automatic Questions), un sistema que permite precomputar conjuntos de preguntas
representativas para un corpus determinado a partir de un grafo de conocimiento. Para
ello, se realiza la deteccion de entidades y relaciones presentes en los textos con las cuales
se construye el grafo. Luego, se identifican comunidades “seménticas” dentro del grafo que
permiten la generaciéon de resimenes textuales. Finalmente, con un LLM fine-tuneado se
genera un conjunto de preguntas representativas a partir de dichos resimenes. La principal
ventaja de este enfoque es su capacidad para generar preguntas que capturan relaciones
profundas presentes en el corpus, incluso cuando dichas relaciones se extienden a través
de multiples documentos o no estan formuladas explicitamente en el texto. De este modo,
se obtiene un conjunto de preguntas verdaderamente representativas del contenido, que
refleja de manera mas fiel la estructura seméntica subyacente.

Este listado de preguntas permite optimizar sistemas RAG: por un lado, (i) incremen-
tando la precision mediante estrategias de recuperacién combinada, donde se enriquece el
conjunto de documentos recuperados; y por otro, (ii) mejorando la latencia de sistemas de
RAG como Speculative RAG, utilizando las preguntas generadas para pre-computar los
embeddings necesarios para separar en subconjuntos los documentos.

La validacion experimental, realizada en multiples datasets estdndar como TriviaQA,
BioASQ, PubHealth y HotPotQA, demostré la efectividad de KRAQ. Los resultados evi-
dencian que las preguntas representativas superan a los baselines por hasta 49 puntos
porcentuales, mientras que su aplicacién en sistemas RAG impulsé mejoras de hasta un
3% en la precision y reducciones de hasta un 11.8% en la latencia. La incorporacion de
estas preguntas no solo mejora la eficiencia y precision de RAG, sino que abre un camino
prometedor para escalar esta tecnologia.

Palabras claves: Generacion Aumentada por Recuperacion (RAG), Modelos de Lenguaje
de Gran Escala (LLMs), Generacién Automatica de Preguntas (QG), Grafos de Conoci-
miento (KG), Clustering Semantico, Optimizacion de RAG.






AGRADECIMIENTOS

Agradezco a la universidad publica, para mi la institucién mas valiosa que tiene este pais
) 7
por brindarme la oportunidad de estudiar y formarme de manera gratuita.

A mi familia, gracias por inculcarme la motivacion al estudio y por hacer posible que pu-
diera dedicarme a aprender.

También quiero agradecer a los amigos que tuve e hice a lo largo de la carrera, quienes
hicieron que todo el recorrido fuera hermoso. En especial, a Pablito Groisman, con quien
comparti el 95% de las materias lo que para mi tiene que romper algin record y que,
ademas, me dio una mano en un momento de crisis durante la tesis.

A Luciano Del Corro, mi director, gracias por su tiempo, su escucha y por acompanarme
en el proceso de este trabajo.

Y finalmente, a Nicolas Palermo, por haberme mostrado papers que fueron una fuente de
inspiracién para el desarrollo de esta tesis.

111






Indice general

1.. Introduccion . . . . . . .o 1
1.1. Motivacidon . . . . . . . . e 1
1.2. Contribuciones . . . . . . . . . . ... 1
1.3. Estructuradelatesis . . . . . . . . . . . L 3

2.. Marco Tedrico . . . . . . . . . e e e 4
2.1. Fundamentos de modelos de lenguaje modernos . . . . . . .. ... ... .. 4

2.1.1. De redes neuronales a la revoluciéon transformer . . . . . . ... . .. 4
2.1.2. Embeddings: representando el significado . . . . . . ... ... ... 4
2.1.3. Modelos de lenguaje de gran escala (LLMs) . . ... ... ... ... 7
2.2. Generacion aumentada por recuperacion (RAG) . . . . .. ... ... L. 12
2.2.1. Principios y componentes de los sistemas RAG . .. ... ... ... 12
2.2.2. Ventajas y desafios de RAG . . . . . ... ... ... ... ... ... 14
2.2.3. Speculative RAG . . . . . .. 15
2.3. Generacién automatica de preguntas . . . . . . .. ... 18
2.3.1. Aplicaciones . . . . . . . . ... 18
2.3.2. Avancesrecientes . . . . . . . . ... 19
2.4. Grafos de Conocimiento y deteccién de comunidades . . . . . . . .. .. .. 20
2.4.1. Grafos de Conocimiento . . . . . . .. ... ... ... ........ 21
2.4.2. Clustering en grafos . . . . . . . . ... L o 23
2.5. Trabajos relacionados alatesis . . . . . . ... ... . ... ... .. 24
2.5.1. Trabajos similares en generacién de preguntas . . . . . . . . . . . .. 25
2.5.2. Trabajos similares en RAG . . . . . . .. ... ... .. ... ... 26

3. KRAQ . . . e e e e 28

3.1. Metodologia de KRAQ . . . . . . . . . . . ... ... 28
3.1.1. Extraccion de entidades y relaciones con GraphRAG . . . . . . . .. 29
3.1.2. Construccion del grafo de conocimiento con GraphRAG . . . . . .. 31
3.1.3. Deteccion de comunidades en el grafo de GraphRAG . . . . . . . .. 32
3.1.4. Generaciéon de resiimenes . . . . . ... ..o 33
3.1.5. Generacion de preguntas con KRAQ . . . ... ... ... ... ... 34

3.2. Experimentacion y resultados de KRAQ . . . . ... .. ... ... ..... 36
3.2.1. Datasets . . . . . . .. e 36
3.2.2. Decisiones generales de implementacién . . . . . . . ... ... ... 39
3.2.3. Diseno de evaluacion para KRAQ . . . . . ... ... ... ... ... 42
3.2.4. Configuracion de GraphRAG . . . . . . . ... ... ... ... ... 45
3.2.5. Modelo generador de preguntas . . . . . ... ... 48
3.2.6. Complejidad Computacional de KRAQ . . . . .. .. ... ... ... 50
3.2.7. Resultados de KRAQ . . . .. . ... ... ... ... ... ..... 51



4.. Combined Retrieve RAG . . . . . . . . . . . 54

4.1. Metodologia de Combined Retrieve RAG . . . . . . ... . ... ... .... 54
4.1.1. Algoritmo . . . . . . ... 54
4.2. Experimentacion y resultados de Combined Retrieve RAG . . . . . . .. .. 55
4.2.1. Disenio de evaluacion . . . . . . . . . ... 56
4.2.2. Setup experimental y parametros elegidos . . . . . . ... ... ... 58
4.2.3. Resultados y analisis . . . . . ... ... ... ... L. 59
4.2.4. Estudios de ablacion . . . . . . ... oo 61
5.. Efficient Speculative RAG . . . . . . . ... 65
5.1. Metodologia de Efficient Speculative RAG . . . . .. ... ... ... .... 65
5.1.1. Algoritmo . . . . . . . .. 65
5.2. Experimentacion y resultados de Efficient Speculative RAG . . . .. .. .. 67
5.2.1. Diseno de evaluaciéon . . . . . . .. ... 67
5.2.2. Calculode scores . . . . . . . ... 69
5.2.3. Paralelismo y estimacion de latencia . . . . . .. ... ... 71
5.2.4. Complejidad del pre-computo de embeddings instruidos en Efficient
Speculative RAG y su estimacion . . . . . . ... .. ... ... ... 73
5.2.5. Fine-tuning de drafter . . . . . . . .. ... 0oL, 75
5.2.6. Setup experimental para Efficient Speculative RAG . . . . . .. . .. 77
5.2.7. Resultados . . . . . . .. . ... ... 78
5.2.8. Analisis de resultados . . . . . . ... Lo 79
5.2.9. Estudios de ablacion . . . . .. ... Lo oL 80
6.. Conclusiones generales . . . . . . . . . . .. ... e 83
6.1. Conclusiones . . . . . . . . . . . e 83
6.2. Trabajos futuros . . . . . . . . ... 84
T.. Apéndice . . . ... 86
7.1. Prompt para la Sintesis de Resimenes Comunitarios (Etapa g) . . . . . .. 86
7.2. Prompt para la Generacion de Preguntas (Modelo fp) . . . ... ... ... 86
7.3. Prompt para la Generacion de Preguntas del Baseline de KRAQ . . . . .. 87
7.4. Prompt para la Generacion de Respuestas en Sistemas RAG . . . . . . . .. 87
7.5. Prompt para la Generacion de Borradores (Mpyafter) €n Speculative RAG . 88
7.6. Prompt para el Modelo Verificador (Myerifier) €n Speculative RAG . . . . . 89

7.7. Prompt para la Evaluacién con LLM como Juez . . . . . . . ... ... ... 90



1. INTRODUCCION

1.1. Motivacion

En los tultimos anos, el desarrollo de los modelos de lenguaje de gran escala (LLMs,
por sus siglas en inglés) ha transformado profundamente las capacidades de los sistemas de
procesamiento del lenguaje natural, permitiendo avances notables en tareas de generacion,
resumen, traducciéon y razonamiento [8, 55, 75]. Sin embargo, estos modelos presentan una
limitacién estructural clave: su conocimiento esta restringido a la informacién contenida
en los datos de entrenamiento y al momento temporal en que estos fueron recopilados.
Ademas, la combinaciéon de su compleja arquitectura y su escala masiva los convierte en
sistemas inherentemente opacos, lo que dificulta controlar la informaciéon que realmente
poseen [35]. Esto conlleva desafios significativos en dominios donde se requiere acceso a
conocimiento actualizado, especializado o confidencial [34].

Ante esta problemética, los sistemas de Generacién por Recuperacion Aumentada
(Retrieval-Augmented Generation, RAG) han emergido como una solucion efectiva que
permite a los LLMs consultar informacién externa en tiempo real mediante la recuperaciéon
de documentos relevantes, que luego se utilizan como contexto adicional para la generacién
de respuestas. Este enfoque hibrido combina la capacidad generativa y de razonamiento
contextual de los LLMs con mecanismos de recuperacion, permitiendo no solo mejorar la
precision y factualidad de las respuestas, sino también incorporar informacién no presente
en el pre-entrenamiento, algo esencial en contextos dinémicos o sensibles [40]. Como re-
sultado, los sistemas RAG han sido ampliamente adoptados en aplicaciones industriales y
por proveedores de servicios en la nube que ofrecen servicios integrales de RAG [1].

No obstante, a pesar de sus ventajas, los sistemas RAG enfrentan limitaciones persis-
tentes. En primer lugar, el proceso de recuperaciéon e integracion de informacién externa
conlleva una carga computacional significativa, lo cual incrementa la latencia y el costo
operativo del sistema. En segundo lugar, los mecanismos de recuperacion tradicionales
suelen basarse en medidas de similitud en el espacio de embeddings, lo que resulta en la
seleccion de documentos con alta similitud superficial pero baja diversidad semantica [2].
Esto afecta negativamente la cobertura de aspectos relevantes del corpus, comprometiendo
la calidad de las respuestas generadas. Ademés, se suma el problema del sesgo de posi-
cion 69|, una consecuencia de los mecanismos de atencion que favorecen la informacion
localizada al inicio del contexto, reduciendo la equidad en la integraciéon de evidencia y
afectando a la precision en las respuestas. Estas limitaciones son especialmente criticas en
dominios especializados como la medicina o el derecho, donde se exige precisién contextual,
razonamiento multihop y cobertura informativa amplia.

1.2. Contribuciones

Para abordar las limitaciones de los sistemas de Generacién por Recuperacion Aumen-
tada (RAG) (como la latencia, el costo computacional y la baja diversidad seméntica en
la recuperacion), esta tesis introduce una nueva metodologia centrada en la generacion
automética de preguntas. Proponemos Knowledge-graph Representative Automatic Ques-
tions (KRAQ), una herramienta diseniada para construir un conjunto de preguntas que
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capten la estructura semantica profunda del corpus. La hipotesis es que este conjunto de
preguntas, cuidadosamente generado a partir de comunidades seméanticas identificadas en
un grafo de conocimiento, actiia como un activo valioso. Especificamente, estas preguntas
pueden enriquecer la fase de recuperacion, mejorando la diversidad y precision, y optimi-
zar la eficiencia computacional en el pipeline de ciertos sistemas RAG. Estas preguntas
actlian como puentes seménticos para enriquecer la recuperacion y, a la vez, como proxies
precalculados que optimizan la eficiencia del pipeline.

A diferencia de enfoques previos de generaciéon de preguntas en RAG que construyen
las preguntas directamente a partir de documentos individuales [25], esta tesis propone
un enfoque estructurado que modela el contenido del corpus como un grafo de conoci-
miento. En esta representacion, las entidades y relaciones extraidas del texto se conectan
explicitamente, lo que permite capturar vinculos profundos entre los conceptos presentes
en distintos documentos. A continuacion, se aplica un algoritmo de clustering [72] para
identificar comunidades seméanticas de nodos, a partir de las cuales se generan resimenes
representativos en lenguaje natural. Sobre estos resimenes se aplica un modelo de len-
guaje fine-tuneado, capaz de producir preguntas que condensan las relaciones latentes y
significativas del corpus.

La herramienta se implementa utilizando el framework GraphRAG [19], que permite
construir el grafo de conocimiento a partir del corpus, identificar comunidades seméanticas y
generar resumenes textuales representativos. Ademas, se introduce un benchmark especifico
para evaluar la relevancia del conjunto de preguntas generadas.

Adicionalmente, para demostrar la eficacia de KRAQ), esta tesis presenta dos aplica-
ciones concisas (que sirven como métricas indirectas del método) orientadas a mitigar
limitaciones criticas en los sistemas RAG actuales. La primera consiste en la creacion de
un algoritmo de recuperaciéon combinada, donde las preguntas generadas se utilizan para
enriquecer el conjunto de documentos recuperados, complementando las busquedas reali-
zadas con la pregunta original del usuario. Esta estrategia se basa en la hipotesis de que
los documentos recuperados utilizando preguntas similares a la pregunta original obteni-
das con KRAQ cubren una mayor diversidad informativa, disminuyendo la redundancia
contextual observada en los métodos estandar de recuperacion. [2].

La segunda aplicaciéon apunta a mejorar la eficiencia computacional de Speculative
RAG [78|, empleando las preguntas generadas por KRAQ para realizar un pre-computo
de los embeddings necesarios para crear los subconjuntos de documentos que luego seran
enviados a los RAG Drafters.

Para validar la efectividad de nuestro enfoque, se realizaron experimentos extensivos
sobre cuatro benchmarks estandar ampliamente utilizados en la comunidad: TriviaQA,
BioASQ, PubHealth y HotPotQA. Los resultados muestran mejoras consistentes. En la
evaluacion directa de la calidad de las preguntas, KRAQ supero6 a los baselines de referencia
por hasta 49 puntos porcentuales en métricas de relevancia seméntica. Adicionalmente, su
aplicacion practica demostrd ser beneficiosa: se observo un incremento de hasta un 3%
en la precision del RAG tradicional usando la técnica de recuperacién combinada, y una
reduccion de hasta el 11.8 % en la latencia del Speculative RAG. Estos resultados validan
empiricamente la cobertura seméntica de las preguntas generadas por KRAQ.

Asi, esta tesis realiza una doble contribucién: por un lado, a nivel tedrico, propone una
arquitectura novedosa para la generacién representativa de preguntas mediante grafos de
conocimiento, y por otro, a nivel experimental, demuestra su eficacia en mejorar el de-
semperfio de sistemas RAG existentes bajo distintos escenarios de evaluacion. En conjunto,
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estos aportes abren una via prometedora hacia la construccion de sistemas de recupera-
cibn mas robustos y escalables, particularmente valiosos en dominios donde la precisién
contextual y la eficiencia computacional son criticas.

1.3. Estructura de la tesis

La presente tesis se organiza en los siguientes capitulos para desarrollar de manera
progresiva la problemaética, las soluciones propuestas y su validacién:

» Capitulo 2 (Marco tedrico y trabajos relacionados): Proporciona los fun-
damentos conceptuales necesarios para comprender las metodologias desarrolladas.
Se abordan los principios de los modelos de lenguaje modernos, incluyendo la ar-
quitectura Transformer y los embeddings. Se profundiza en los sistemas RAG, sus
componentes, ventajas y desafios, asi como en la optimizacion de Speculative Rag. Se
revisan trabajos previos en generacién automética de preguntas y la representaciéon
estructurada del conocimiento mediante grafos y analisis comunitario. Finalmente,
se analizan trabajos similares a las propuestas de esta tesis, estableciendo un didlogo
con el estado del arte.

» Capitulo 3 (KRAQ): Introduce el niicleo de la contribucién de esta tesis: el sis-
tema KRAQ. Se detalla exhaustivamente su metodologia, desde la extracciéon de
conocimiento y construcciéon de un grafo, pasando por la detecciéon de comunidades
semanticas y la sintesis de restmenes, hasta la generaciéon de preguntas represen-
tativas mediante un modelo de lenguaje fine-tuneado. Posteriormente, se presenta
la experimentaciéon y los resultados de KRAQ), incluyendo los datasets utilizados,
las decisiones generales de implementacion, el disefio de evaluacién especifico, y un
analisis de su rendimiento en la generaciéon de preguntas de alta calidad seméantica.

» Capitulo 4 (Combined Retrieve RAG): Explora la primera aplicacion préctica
de las preguntas generadas por KRAQ. Se presenta la metodologia de Combined
Retrieve RAG, un algoritmo disefiado para enriquecer la diversidad de los documentos
recuperados y mejorar la precision de los sistemas RAG. A continuacién, se detallan
los experimentos realizados para evaluar esta propuesta, analizando su impacto en la
calidad de las respuestas y presentando estudios de ablacién.

» Capitulo 5 (Efficient Speculative RAG): Describe la segunda aplicacion de
KRAQ), orientada a mejorar la eficiencia computacional del framework Speculative
RAG. Se introduce la metodologia de Efficient Speculative RAG, que utiliza las pre-
guntas de KRAQ para permitir el pre-computo de embeddings instruidos. La seccién
de experimentacion evalta la reduccion de latencia obtenida y la preservacion de la
calidad de respuesta, complementada con estudios de ablacién.

» Capitulo 6 (Conclusiones generales): Sintetiza los hallazgos principales de la
investigacion, resume las contribuciones teoéricas y practicas, y discute las implica-
ciones de los resultados obtenidos. Finalmente, se proponen lineas de trabajo futuro
que podrian expandir las ideas y metodologias presentadas.

Adicionalmente, la tesis incluye un Apéndice con los prompts detallados utilizados en
las diversas etapas de generacion y evaluacion, asi como la bibliografia consultada.



2. MARCO TEORICO

2.1. Fundamentos de modelos de lenguaje modernos

Los avances contemporaneos en el Procesamiento del Lenguaje Natural (PLN) se fun-
damentan en una rapida evolucién de las arquitecturas de aprendizaje profundo. Esta
seccion traza el recorrido desde los modelos pioneros de redes neuronales hasta la llegada
de la arquitectura Transformer, que sent6 las bases para los potentes modelos de lenguaje
que se utilizan en la actualidad.

2.1.1. De redes neuronales a la revolucion transformer

Las Redes Neuronales Artificiales (ANNs, por sus siglas en inglés) constituyen la base
computacional del aprendizaje profundo moderno. Estos modelos, inspirados vagamente en
la estructura del cerebro humano, son capaces de aprender funciones de mapeo complejas
directamente a partir de grandes volimenes de datos. Mediante la optimizacién de sus
pardmetros internos a través de algoritmos como la retropropagaciéon y el descenso por
gradiente, las redes neuronales pueden identificar patrones intrincados y realizar tareas
sofisticadas en diversos dominios, incluyendo el PLN [24].

Un hito fundamental en la evoluciéon del PLN fue la introducciéon de la arquitectura
Transformer por Vaswani et al. [75]. El Transformer se distingue por su innovador meca-
nismo de auto-atencion (self-attention), que permite al modelo ponderar la importancia
de diferentes tokens de la secuencia entre si. Esta capacidad para capturar dependencias
a largo plazo y contextualizar la informacién de manera flexible, junto con su diseno inhe-
rentemente paralelizable, superé muchas de las limitaciones de arquitecturas secuenciales
previas como las Redes Neuronales Recurrentes (RNNs). La arquitectura Transformer origi-
nal comprende componentes de codificador (encoder), disenados para procesar la secuencia
de entrada y generar representaciones contextualizadas, y componentes de decodificador
(decoder), orientados a generar una secuencia de salida, siendo ambos cruciales para tareas
de secuencia a secuencia como la traduccién automaética.

El impacto de la arquitectura Transformer ha sido transformador, sentando las bases
para el desarrollo de los actuales LLMs. Al escalar la profundidad y el ancho de los modelos
Transformer y entrenarlos sobre corpus textuales masivos, los investigadores han logrado
crear sistemas con una comprension y capacidad de generacién de lenguaje sin precedentes.
Estos LLMs, que se exploraran con méas detalle en secciones posteriores, han redefinido el
estado del arte en una multitud de tareas de PLN y son un componente central de las
metodologias investigadas en esta tesis.

2.1.2. Embeddings: representando el significado

En el contexto del aprendizaje automético y, de manera crucial, en el PLN, los em-
beddings constituyen una técnica fundamental para representar datos categoéricos discretos
en espacios vectoriales continuos y de menor dimensién. Antes de que el texto pueda ser
procesado por modelos de aprendizaje automatico, este debe ser segmentado en unidades
més pequenas llamadas tokens. Un token puede ser una palabra, una sub-palabra (e.g.,
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2.1. Fundamentos de modelos de lenguaje modernos 5

"embedding” podria dividirse en tokens como "embed” y "ding”) o incluso un caracter indi-
vidual, dependiendo del algoritmo de tokenizacién utilizado. Una vez fragmentado el texto,
los embeddings se utilizan para mapear estos tokens (o secuencias de tokens como frases y
documentos) a representaciones vectoriales densas. Estas representaciones permiten cap-
turar similitudes y relaciones seménticas entre las unidades del lenguaje, habilitando su
procesamiento eficiente por redes neuronales y otros algoritmos de aprendizaje |3, 50].

Representacion vectorial densa

Tradicionalmente, las palabras eran representadas mediante codificaciones locales como
el one-hot encoding. En esta representaciéon, cada palabra de un vocabulario V se mapea
a un vector binario de dimension |V| (donde |V| es el tamano total del vocabulario), en el
cual solo una entrada es igual a uno y todas las demés son cero. Si bien es simple, esta
representacion presenta dos grandes desventajas: primero, genera vectores de muy alta
dimension y extremadamente dispersos (es decir, con una abrumadora mayoria de ceros),
lo que es ineficiente computacionalmente; segundo, y més importante, carece de informacién
seméntica intrinseca, ya que los vectores de palabras diferentes son ortogonales entre si,
sin reflejar ningin tipo de similitud o relacion (e.g., los vectores de "rey” y "reina” serian
tan distintos como los de "rey” y "manzana”).

Los embeddings superan estas limitaciones proyectando las palabras (u otras unidades
textuales) en un espacio vectorial denso de una dimension d significativamente menor
que |V|. Un vector se considera denso porque la mayoria de sus elementos son valores de
punto flotante distintos de cero, cada uno contribuyendo a la representaciéon del significado.
Formalmente, una funcién de embedding es un mapeo:

Embedding : V — R?

donde d < |V|. En este espacio de embedding, la proximidad geométrica (medida, por ejem-
plo, por la distancia euclidiana o la similitud coseno) entre vectores busca reflejar relaciones
seménticas o contextuales entre las palabras correspondientes. Una propiedad deseable y a
menudo observada en buenos espacios de embedding es la capacidad de capturar analogias
mediante aritmética vectorial, como la famosa relacion:

vec(rey) — vec(hombre) + vec(mujer) &~ vec(reina)

Este tipo de relaciones vectoriales fue popularizado por modelos pioneros como Word2Vec
[50], que utiliza tareas de prediccion contextual (como Skip-Gram, que predice palabras de
contexto dada una palabra central, o CBOW, Continuous Bag-of-Words, que predice una
palabra central a partir de su contexto) para aprender representaciones que preservan la
estructura semantica y sintactica del lenguaje a partir de grandes corpus textuales.

Medicion de similitud: Similitud Coseno

Una vez que las unidades textuales (palabras, frases, documentos) han sido representa-
das como vectores en un espacio de embedding, es fundamental poder cuantificar su simi-
litud o diferencia. Una de las métricas mas utilizadas para este proposito es la similitud
coseno.

Dados dos vectores de embedding no nulos, A y B , la similitud coseno mide el coseno del
adngulo entre ellos. Esta métrica evaliia la orientaciéon de los vectores, independientemente
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de su magnitud. Su valor varia entre -1 (vectores exactamente opuestos) y 1 (vectores con
la misma orientacion), donde 0 indica ortogonalidad (sin similitud de orientaciéon). Un valor
més cercano a 1 indica una mayor similitud semantica.
La formula para la similitud coseno entre dos vectores A y B de n dimensiones es:
cos(A, B) = {1, :
1]l

(2.1)

IBI /s, a2 /sr, B

donde A - B es el producto punto de los vectores A y B, y ||A]| y || B|| son sus respectivas
magnitudes euclidianas (normas L2).
En el contexto del PLN, la similitud coseno es ampliamente utilizada para:

= Encontrar las palabras més similares a una palabra dada.
= Comparar la similitud seméntica entre frases o documentos.

» En sistemas de recuperacion de informacion (como los RAG), para encontrar los
documentos o pasajes méas relevantes para una consulta del usuario, comparando el
embedding de la consulta con los embeddings de los documentos indexados.

Su popularidad se debe a su eficacia para capturar la similitud semantica y a su relativa
insensibilidad a la longitud de los documentos (ya que la magnitud de los vectores se
normaliza).

Tipos de embeddings: estaticos vs. contextuales

Existen dos enfoques principales para obtener y utilizar embeddings:

Embeddings estéticos (o preentrenados): Modelos como Word2Vec [50], GloVe (Global Vec-
tors for Word Representation) [60], y FastText [6] aprenden representaciones vecto-
riales fijas para cada palabra del vocabulario sobre grandes corpus textuales. En
estos modelos, cada palabra tiene un tinico vector asociado, independientemente del
contexto especifico en el que aparezca. FastText, ademas, aprende embeddings para
n-gramas de caracteres, lo que le permite generar vectores para palabras fuera del
vocabulario (OOV) y capturar mejor informacion morfologica.

Embeddings contextuales (o dindmicos): Con la llegada de arquitecturas méas profundas
y contextuales, como las basadas en Transformers, surgieron modelos capaces de
generar embeddings que varian segin el contexto en el que aparece una palabra. EL-
Mo (Embeddings from Language Models) [61] fue uno de los pioneros, utilizando
LSTMs bidireccionales. Posteriormente, modelos como BERT (Bidirectional Enco-
der Representations from Transformers) [15] y los propios LLMs generan embeddings
profundamente contextuales para cada token en una secuencia, lo que permite resol-
ver ambigiiedades léxicas (e.g., la palabra "banco” tendra diferentes embeddings en
"banco de peces” vs. "banco financiero”).

Rol critico de los embeddings en LLMs y RAG

En los LLMs, los embeddings son un componente critico. Constituyen la primera capa
del modelo, transformando la secuencia de tokens de entrada en representaciones numéricas
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que el resto de la red puede procesar. Ademas, durante el preentrenamiento y el fine-tuning,
estos embeddings se ajustan para capturar las complejas relaciones seméanticas y sintacticas
presentes en los datos.

En los sistemas RAG, los embeddings desempenan un papel doblemente esencial:

1. Para la indexacién del corpus: Los documentos o chunks de la base de conoci-
miento externa se convierten en vectores de embedding y se almacenan en una base
de datos vectorial, creando un indice seméantico.

2. Para la recuperacion en tiempo de consulta: Cuando un usuario formula una
pregunta, esta también se convierte en un vector de embedding utilizando el mismo
modelo. Luego, se compara este embedding de consulta con los embeddings de los
documentos indexados (usualmente mediante similitud coseno) para identificar y re-
cuperar los fragmentos de texto mas relevantes que serviran de contexto al LLM para
generar la respuesta.

La calidad de los embeddings y la efectividad de la métrica de similitud son, por lo tanto,
cruciales para el rendimiento de los sistemas RAG, ya que determinan la relevancia del
contexto proporcionado al LLM.

2.1.3. Modelos de lenguaje de gran escala (LLMs)

Los Modelos de Lenguaje de Gran Escala (LLMs) representan un avance significativo
en el Procesamiento del Lenguaje Natural como resultado de escalar la arquitectura Trans-
former (predominantemente las variantes decoder-only como LLaMA [70] o arquitecturas
encoder-decoder) a un numero masivo de parametros, desde miles de millones hasta billones
y entrenarlos en cantidades masivas de datos textuales, a menudo extraidos de la web [8, 11].

Principios arquitecténicos y preentrenamiento El objetivo de preentrenamiento més
comun para los LLMs generativos (tipicamente decoder-only) es la prediccion del siguiente
token: dado un fragmento de texto, el modelo aprende a predecir el token mas probable
que sigue en la secuencia. Es crucial destacar que, en lugar de predecir un tnico token
determinista, el LLM en realidad genera una distribucién de probabilidad sobre todo el
vocabulario de posibles tokens para la siguiente posicién. Durante la generaciéon de texto
(inferencia), en lugar de elegir siempre el token mas probable, se utiliza un proceso de
muestreo (sampling) para seleccionar el siguiente token a partir de esta distribucion de
probabilidad. Este proceso introduce un grado de aleatoriedad controlada, lo que permite
generar un texto més variado y natural. Las estrategias de muestreo van desde la selecciéon
determinista del token més probable (greedy decoding) hasta técnicas mas sofisticadas que
consideran un subconjunto de los tokens més plausibles (e.g., top-k, nucleus sampling) pa-
ra aumentar la creatividad de la respuesta. A través de este simple pero potente objetivo
auto-supervisado, y gracias a la escala sin precedentes de los datos y del propio modelo,
los LLMs desarrollan una comprensiéon sorprendentemente profunda de la sintaxis, la se-
mantica, el conocimiento del mundo incorporado en los textos de entrenamiento, y ciertas
capacidades de razonamiento y abstraccion [7].

Capacidades emergentes Uno de los hallazgos més notables en el desarrollo de LLMs
es el fenomeno de las capacidades emergentes [80]. Se trata de habilidades complejas
que no estan presentes (o lo estan de forma muy rudimentaria) en modelos mas pequenos
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de la misma familia arquitecténica, pero que emergen de manera no lineal una vez que el
tamano del modelo (ntimero de parametros) y/o la cantidad de datos de entrenamiento
superan ciertos umbrales criticos.

Ejemplos de capacidades emergentes incluyen:

» Aprendizaje en pocos ejemplos (Few-Shot Learning): La capacidad de rea-
lizar nuevas tareas con un rendimiento razonable después de ver solo unas pocas
demostraciones (ejemplos de entrada-salida de la tarea) proporcionadas en el prompt
de entrada, sin necesidad de reentrenar o ajustar los pesos del modelo. Brown et al.
[8] demostraron esto extensamente con GPT-3.

= Razonamiento aritmético y simbdlico: Habilidad para resolver problemas ma-
tematicos simples o seguir cadenas de razonamiento logico.

= Generacion de cédigo: Capacidad para escribir codigo funcional en diversos len-
guajes de programacién a partir de descripciones en lenguaje natural.

» Comprension avanzada de instrucciones: Modelos como GPT-4 [55] muestran
una habilidad sofisticada para seguir instrucciones complejas y matizadas en lenguaje
natural, incluso para tareas para las cuales no fueron explicitamente entrenados.

Limitaciones fundamentales de los LLMs

A pesar de los avances extraordinarios y las capacidades impresionantes demostradas
por los LLMs contemporaneos, como GPT-4 [55], PaLM [11] y LLaMA [70], estos siste-
mas presentan una serie de limitaciones estructurales, operativas y conceptuales. Estas
restricciones pueden mermar su aplicabilidad y fiabilidad en escenarios que demandan al-
ta precision factual, conocimiento actualizado, interpretabilidad o razonamiento complejo.
Comprender estas limitaciones es crucial para el desarrollo de aplicaciones robustas y para
guiar la investigacion futura [34].

Conocimiento estatico y desactualizado. Una de las limitaciones mas fundamentales
de los LLMs preentrenados radica en la naturaleza estatica de su conocimiento. Estos
modelos aprenden a partir de un corpus de datos masivo que, una vez completado el
preentrenamiento, permanece fijo. Esto implica que:

= Desactualizaciéon temporal: El conocimiento del LLM estéa intrinsecamente ligado
al corte temporal de sus datos de entrenamiento. No pueden incorporar informacién
sobre eventos, descubrimientos o desarrollos ocurridos posteriormente sin un reentre-
namiento o mecanismos de actualizacién, lo cual es costoso.

= Ausencia de conocimiento especifico o confidencial: Por disefio, no tienen
acceso a informacién especifica de un dominio particular que no estuviera presente
en su corpus de preentrenamiento publico, ni a datos privados o confidenciales de un
usuario u organizacion.

Esta amnesia respecto a la informacién nueva o no vista durante el preentrenamiento ha
sido una de las principales motivaciones para el desarrollo de arquitecturas hibridas como
RAG, que buscan complementar el conocimiento paramétrico del LLM con informacién
obtenida en tiempo real de fuentes externas [40].
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Alucinaciones y fiabilidad factual. Los LLMs, a pesar de su fluidez y coherencia apa-
rente, pueden generar respuestas que son plausibles y gramaticalmente correctas, pero
facticamente incorrectas, inconsistentes con el contexto proporcionado, o incluso inven-
tadas. Este fenémeno se conoce cominmente como alucinacion (hallucination) [31]. Las
alucinaciones pueden surgir por diversas razones, incluyendo:

= Errores o sesgos en los datos de entrenamiento.

= La naturaleza probabilistica de la generaciéon de texto, que optimiza la verosimilitud
de la secuencia en lugar de la veracidad factual.

= Dificultad para distinguir entre informaciéon memorizada y conocimiento inferido.

La propensién a las alucinaciones dificulta enormemente el uso de LLMs en dominios don-
de la precision y la veracidad son criticas (e.g., medicina, finanzas, derecho), y subraya la
necesidad de mecanismos de verificacién y validacion.

Opacidad e interpretabilidad. Dada su vasta escala (miles de millones de parametros)
y la complejidad de sus arquitecturas internas, los LLMs operan en gran medida como
cajas negras. Resulta extremadamente dificil:

= Determinar el conocimiento especifico: Precisar qué informaciéon exacta conoce
el modelo, como esta representada internamente, y cuéles son las fuentes originales
de ese conocimiento.

= Auditar el proceso de generacion: Entender por qué el modelo genera una res-
puesta particular en lugar de otra, o trazar el razonamiento (si lo hubiera) que condujo
a una conclusiéon especifica.

= Identificar y Corregir Errores Sistematicos: La opacidad dificulta el diagnostico
y la correccién de sesgos o patrones de error recurrentes.

Esta falta de interpretabilidad y auditabilidad es una preocupacién central, especialmente
en aplicaciones sensibles, y es un area activa de investigacion [7].

Costos computacionales y sostenibilidad. El entrenamiento y, en menor medida, la
inferencia de los LLMs més grandes requieren recursos computacionales masivos:

= Entrenamiento: Modelos como PaLM y GPT-4 necesitan clisteres de miles de
GPUs de alto rendimiento (o TPUs equivalentes) y semanas o meses de entrena-
miento, utilizando técnicas de paralelizacién de datos y modelos complejas como
FSDP (Fully Sharded Data Parallel) o ZeRO (Zero Redundancy Optimizer) [11, 68|.
Esto implica un costo econémico y energético considerable.

= Inferencia: Aunque menos intensiva que el entrenamiento, la ejecucion de LLMs
grandes para generar respuestas también demanda hardware especializado y optimi-
zaciones para lograr latencias aceptables, especialmente a escala.

Estos altos costos limitan el acceso a la investigacion y desarrollo de LLMs de vanguardia
a un pequeno nimero de grandes corporaciones y consorcios, planteando cuestiones sobre
la democratizaciéon de la IA y la sostenibilidad ambiental.
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Limitaciones en razonamiento complejo. Si bien los LLMs pueden exhibir capacidades
de razonamiento sorprendentes en ciertas tareas, especialmente con técnicas de prompting
como chain-of-thought [62|, todavia muestran debilidades en formas de razonamiento mas
complejas o estructuradas:

» Razonamiento multi-salto (Multi-hop Reasoning): Dificultad para integrar
consistentemente informacién proveniente de miltiples fragmentos de texto o realizar
miltiples pasos inferenciales para llegar a una conclusion.

» Razonamiento simbodlico y numérico: Limitaciones en la manipulacién precisa
de simbolos, la realizacion de operaciones aritméticas exactas (especialmente con
nameros grandes o multiples pasos), y el seguimiento de reglas logicas formales.

= Razonamiento de sentido comiin robusto: Aunque han mejorado, los LLMs atn
pueden fallar en tareas que requieren una comprension profunda del sentido comiin
del mundo fisico o social.

Estas limitaciones indican que, si bien los LLMs son excelentes modelos de lenguaje, su
capacidad para un razonamiento robusto y generalizable sigue siendo un area de desarrollo
activo [62].

Sesgo de posicion y sensibilidad al orden del contexto. Incluso cuando se les pro-
porciona informaciéon relevante, los LLMs pueden no utilizarla de manera uniforme o equi-
tativa. Se ha observado que muchos modelos exhiben un sesgo de posicion (positional bias),
lo que significa que la ubicaciéon de la informacion dentro del prompt de entrada (el con-
texto) puede influir desproporcionadamente en la respuesta generada [69]. Este fenomeno
se manifiesta de varias maneras:

= Preferencia por informacién al inicio o al final: A menudo, la informacion
presentada al principio o al final del contexto tiene una mayor probabilidad de ser
utilizada o recordada por el modelo en su respuesta, mientras que la informacién en
el medio del contexto ("lost in the middle”) puede ser ignorada o subutilizada, incluso
si es crucial [45].

= Impacto en tareas de miltiples documentos: En sistemas RAG, donde se pro-
porcionan multiples documentos recuperados como contexto, el orden en que se pre-
sentan estos documentos puede afectar significativamente la respuesta final.

= Inconsistencias en las respuestas: El mismo conjunto de informacién, presentado
en diferente orden, podria llevar a respuestas diferentes.

Fine-tuning de LLMs para adaptacién y especializacion

El fine-tuning (ajuste fino) es una técnica fundamental en el ciclo de vida de los LLMs.
Consiste en adaptar un modelo preentrenado sobre vastos corpus de datos genéricos a una
tarea especifica o a un dominio particular mediante un entrenamiento adicional sobre un
conjunto de datos més reducido y especializado para dicha tarea. Este procedimiento se
enmarca en el paradigma del aprendizaje por transferencia (transfer learning), permitiendo
aprovechar el conocimiento general del lenguaje, la sintaxis, la seméantica y cierto grado
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de conocimiento del mundo que el modelo adquirié durante su costosa fase de preentrena-
miento [15, 64].

Formulaciéon general. Dado un modelo de lenguaje preentrenado cuyos pardmetros se
denotan por Oy, €l proceso de fine-tuning busca encontrar una nueva configuracion de
parametros 6’ que minimice una funciéon de pérdida especifica para la tarea objetivo, Liask.
Formalmente, el objetivo es:

' = arg mel,nE(x,y)N'Dmsk [ﬁtask(f(x; 9)1 y)]
donde Dy es el dataset especifico de la tarea y f(x;0) es la salida del modelo.

Estrategias principales de Fine-tuning. Existen diversas estrategias para realizar el
fine-tuning de LLMs:

Full Fine-tuning. Consiste en actualizar todos los parametros del modelo preentrenado.
Aunque teodricamente ofrece la méxima flexibilidad, es computacionalmente muy costoso y
puede ser propenso al sobreajuste en datasets pequenos.

Instruction Tuning. Es una forma de fine-tuning supervisado donde el modelo se entrena
con ejemplos formulados como instrucciones en lenguaje natural [56]. El modelo aprende a
generar respuestas apropiadas condicionadas a una amplia variedad de prompts que descri-
ben la tarea (e.g., "Resume el siguiente texto:”, ”’;Cuél es la capital de Y?7”). Este enfoque
mejora la capacidad de los LLMs para seguir instrucciones y generalizar a tareas no vistas.
En esta tesis, el modelo generador de preguntas de KRAQ se beneficia de esta técnica (ver

Seccion 3.1.5).

Parameter-Efficient Fine-tuning (PEFT). Dada la carga computacional del full fine-
tuning, las técnicas de PEFT buscan adaptar los LLMs modificando solo una pequena
fraccion de los parametros o aniadiendo un namero reducido de pardmetros entrenables.

LoRA (Low-Rank Adaptation). Propuesta por Hu et al. [27], LoRA mantiene congela-
das las matrices de pesos originales W de ciertas capas e introduce dos matrices pequenas,
Ay B, cuyo producto BA representa la actualizacion AW = BA. Solo se entrenan A y B.
El rango r de estas matrices es mucho menor que las dimensiones originales, reduciendo
drasticamente los parametros entrenables y los requisitos de memoria, logrando un ren-
dimiento comparable al full fine-tuning en muchas tareas. La Ecuacién 2.2 describe esta
actualizacion.

W' =W + AW =W + BA (2.2)

QLoRA (Quantized LoRA). Introducida por Dettmers et al. [14], QLoRA optimiza
LoRA para mayor eficiencia en memoria. Permite el fine-tuning de LLMs muy grandes en
hardware con VRAM limitada. Combina:

= Cuantizacion del Modelo Base a 4 bits: Los pesos del modelo preentrenado
se cuantizan a 4 bits usando el formato NF4 (NormalFloat4), optimizado para
distribuciones de pesos neuronales, reduciendo drasticamente la huella de memoria.
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= Doble Cuantizaciéon: Se aplica una segunda cuantizacion a las constantes de cuan-
tizacién de la primera etapa.

» Aplicacién de LoRA: Las matrices de adaptacion LoRA (A y B) se mantienen en
mayor precision (e.g., BFloat16) y se aplican sobre el modelo base cuantizado. Solo
los parametros de LoRA se actualizan.

» Optimizadores Paginados (Paged Optimizers): Para manejar picos de memo-
ria.

QLoRA ha demostrado ser muy efectiva para el fine-tuning de LLMs con decenas de miles
de millones de pardmetros en GPUs individuales. En esta tesis, tanto el modelo generador
de preguntas de KRAQ como el modelo Mpyafier (en una fase exploratoria) fueron ajustados
utilizando QLoRA (ver Secciones 3.2.5 y 5.2.5).

2.2. Generacion aumentada por recuperacion (RAG)

Los sistemas de Generacion por Recuperacion Aumentada (Retrieval-Augmented Ge-
neration, RAG) han emergido como una arquitectura efectiva para mitigar algunas de
las limitaciones inherentes a los LLMs, en particular su dependencia de un conocimiento
paramétrico estatico y su incapacidad para acceder a informacién externa o actualizada
posterior a su fase de preentrenamiento [40]. Al integrar un componente de recuperacion de
informacién con un modelo generativo potente, los sistemas RAG pueden producir respues-
tas més precisas, factuales y contextualmente relevantes, basandose en evidencia obtenida
en tiempo real de una base de conocimiento externa.

2.2.1. Principios y componentes de los sistemas RAG

En tareas que requieren un conocimiento intensivo, donde la respuesta no puede derivar-
se unicamente del conocimiento general del LLM, una instancia de RAG puede entenderse
como el procesamiento de una consulta @) del usuario, utilizando un conjunto de documen-
tos de evidencia D = {dj,ds,...,dy} recuperados de un corpus externo E, para generar
una respuesta A. El objetivo es que la respuesta generada A sea coherente, precisa y esté
fundamentada en la evidencia D.

Desde una perspectiva computacional, un sistema RAG estandar consta de dos com-
ponentes principales que operan secuencialmente:

1. Recuperador (Retriever, R): Dada una consulta del usuario @, este modulo es
responsable de buscar y seleccionar dentro de un corpus de documentos E un sub-
conjunto D de k documentos o fragmentos de texto (chunks) que se consideran los
mas relevantes para responder a ). Formalmente, D = R(Q, E, k).

2. Generador (Generator, G): Este modulo, tipicamente un LLM, recibe la consulta
original ) y el conjunto de documentos recuperados D como contexto adicional.
Utiliza esta informacién combinada para generar la respuesta final A. Formalmente,

A=G(Q,D).
La formulacion general del proceso RAG puede, por lo tanto, expresarse como:

A=G(Q.RQ, E,k))
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Durante la evaluacion de un sistema RAG (si se realiza de forma end-to-end o si se ajusta el
generador), se busca minimizar una funcion de pérdida E(A, A,ef) que mida la discrepancia
entre la respuesta generada A y una respuesta de referencia Aper [29].

Se explicaran las evaluaciones usadas en esta tesis en la Seccion 4.2.1

El proceso de recuperacion detallado

El componente de recuperacion es crucial para el éxito de un sistema RAG. En la ma-
yoria de las implementaciones modernas, y consistentemente en esta tesis, la recuperaciéon
se basa en la similitud seméntica en un espacio de embeddings:

1. Indexacion del corpus (Offline):

» El corpus documental F se divide primero en fragmentos manejables (chunks),
Cj.

» Cada chunk ¢; se codifica en un vector de embedding, €; = Emb(¢;), utilizando
un modelo de embeddings preentrenado.

» Estos vectores €;, junto con sus chunks originales ¢; (o referencias a ellos), se
almacenan en una base de datos vectorial especializada, que permite busquedas
eficientes por similitud.

2. Recuperacion en yiempo de consulta (Online):

» La consulta del usuario @ se codifica en un vector de embedding ¢ = Emb(Q)
utilizando el mismo modelo de embeddings que se us6 para indexar el corpus.

= Se calcula la similitud entre el vector de consulta ¢ y todos los vectores de
chunk €; en la base de datos indexada. La métrica de similitud més cominmente
empleada es la similitud coseno (explicada en detalle en la Seccion 2.1.2,
Ecuacion 2.1).

= Los k chunks c; cuyos vectores €; presentan la mayor similitud coseno con ¢ se
seleccionan como el conjunto de documentos relevantes D = {dy, ..., dy}.

La calidad de los embeddings y la eleccién del umbral k£ son hiperparametros criticos que
impactan directamente la relevancia del contexto proporcionado al generador.

Pseudocdédigo de un RAG Tradicional

El flujo de trabajo de un sistema RAG tradicional puede resumirse en el Algoritmo 1.

Algorithm 1 Algoritmo de RAG Tradicional (con Busqueda Vectorial Eficiente)

Require: Consulta del usuario @), Base de Datos Vectorial DByectorial (contiene embed-
dings y documentos/chunks), Modelo de Embedding Emb(-), Namero de documentos
a recuperar k, Modelo Generador LLM G(-,-)

Ensure: Respuesta generada A

1: ¢+ Emb(Q) > Codificar la consulta del usuario en un embedding
2: D < DByectorial-Search(q, k) > Recupera k chunks relevantes a g
3: contexto < ConcatenateDocuments(D) > Formar el contexto para el LLM
4 A G(Q, contexto) > Generar respuesta con el LLM y el contexto
5: return A
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Notese que, en la practica, las bases de datos vectoriales realizan el paso de calculo de
similitud y ordenamiento de manera mucho maés eficiente utilizando estructuras de datos
como HNSW [28] o IVFADC, en lugar de una busqueda exhaustiva.

2.2.2. Ventajas y desafios de RAG
Ventajas de los sistemas RAG

Los sistemas RAG presentan multiples beneficios que los posicionan como una alterna-
tiva robusta a los LLMs auténomos:

= Conocimiento actualizable y especifico: Al recuperar documentos de un corpus
externo, los RAG pueden incorporar informacion reciente o especifica de un dominio
sin necesidad de reentrenar costosamente el LLM base. El corpus puede actualizarse
independientemente.

= Reducciéon de alucinaciones: Al condicionar la generacién en evidencia recupe-
rada, se reduce la tendencia de los LLMs a inventar informacién, aumentando la
factualidad de las respuestas.

» Explicabilidad y trazabilidad: Dado que las respuestas estan (idealmente) funda-
mentadas en los documentos recuperados, es posible citar las fuentes, lo que aumenta
la transparencia y permite al usuario verificar la informacion.

= Control sobre la informacioén: Permite restringir las respuestas a un corpus de
conocimiento especifico y confiable, lo cual es crucial en entornos empresariales o
dominios sensibles.

= Potencial de personalizacion: El corpus de recuperacién puede adaptarse a usua-
rios o contextos especificos.

Limitaciones y desafios inherentes

No obstante, los RAG también presentan desafios importantes que deben ser conside-
rados:

» Dependencia de la calidad de recuperacion (Retrieval Quality): Si el recu-
perador falla en encontrar los documentos verdaderamente relevantes, o si recupera
informacién ruidosa, contradictoria o sesgada, la calidad de la respuesta generada
por el LLM se vera comprometida, incluso si el LLM es muy potente [2].

» Sensibilidad al niimero y orden de documentos: La eleccién de cudntos docu-
mentos recuperar (k) es critica. Demasiados documentos pueden abrumar al LLM o
exceder su ventana de contexto; muy pocos pueden omitir informacién vital. Ademés,
muchos LLMs exhiben un sesgo de posicién, dando més importancia a la informacién
al inicio o al final del contexto [69].

= Costo computacional en inferencia: Aunque se evita el reentrenamiento, cada
consulta requiere ejecutar el pipeline completo de recuperacion (busqueda en base de
datos vectorial) y generacion (inferencia del LLM), lo que puede introducir latencia
y ser costoso a gran escala.
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= Desafios en la sintesis de evidencia multiple: Integrar informacién de multiples
documentos recuperados de manera coherente, resolver contradicciones entre ellos, o
asegurar que toda la evidencia relevante sea utilizada por el LLM, sigue siendo un
desafio abierto intrinseco de los LLMS.

Estas limitaciones impulsan la investigacién activa en la mejora de cada componente y en
el desarrollo de estrategias més sofisticadas, algunas de las cuales se exploran en la presente
tesis.

2.2.3. Speculative RAG

Para abordar las limitaciones explicadas en la seccionan anterior, una linea de investi-
gacion relevante se ha centrado en arquitecturas que mejoran la eficiencia y exploran una
mayor diversidad seméntica. Un ejemplo paradigmético de esta direccién es Speculative
RAG, introducido por Wang et al. [78|. Este enfoque adapta la estrategia de draft-then-
verify, popularizada por técnicas de speculative decoding en la generacion de LLMs [82], al
contexto especifico de los sistemas RAG.

Principios fundamentales del paradigma Draft-then-Verify en RAG. En lugar
de que un dnico LLM, usualmente grande y costoso, procese todo el contexto recuperado
para generar la respuesta, Speculative RAG emplea un sistema de dos etapas. Primero,
miultiples modelos "borrador” (Mpyafter), que pueden ser LLMs més pequenos y, por ende,
més rapidos, generan en paralelo un conjunto de respuestas candidatas. Cada uno de estos
modelos borradores opera sobre un subconjunto diferente de los documentos recuperados,
donde cada subconjunto esté disefiado para capturar distintas perspectivas respecto a la
consulta. Posteriormente, un modelo "verificador” (Mvyerifier), que puede ser un LLM mas
potente, evaltia estos borradores y selecciona el que se considera de mayor calidad como la
respuesta final. Esta paralelizacion de la generacion de borradores y la especializacion de
tareas pueden conducir a una reduccién en la latencia y a una exploraciéon mas amplia del
espacio de posibles respuestas.

Construccién de subconjuntos de documentos con embeddings instruidos. Un
aspecto crucial de Speculative RAG es como se construyen los subconjuntos de docu-
mentos que se proporcionan a cada modelo borrador. Dado un conjunto de documentos
D = {dy,ds,...,d,} recuperados inicialmente para una pregunta original @, el sistema
primero genera representaciones vectoriales (embeddings) de estos documentos que estan
explicitamente “instruidos” o condicionados por la pregunta Q. Para ello, se emplea un
modelo de embeddings con un encoder especializado, como InBedder-RoBERTa [59], que
produce una representacion €(d; | Q) para cada documento d;. La instrucciéon proporciona-
da por la pregunta ) al encoder de embeddings tiene como objetivo mejorar la agrupaciéon
semantica de los documentos en relaciéon con la consulta especifica, un aspecto fundamental
para la posterior generacion de perspectivas diversas en los borradores. Una vez obteni-
dos estos embeddings instruidos, los documentos se agrupan en k clasteres, mediante el
algoritmo K-Means [47]. A partir de estos clusters, que representan diferentes perspectivas
tematicas de la informacién recuperada, se generan m subconjuntos de documentos d; C D.
Cada subconjunto d; se construye muestreando un tinico documento de cada uno de los k
clusteres. Esta estrategia de muestreo tiene un doble propoésito: reducir la redundancia de
informacién dentro de cada subconjunto y asegurar que cada uno de ellos cubra, idealmen-
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te, todas las perspectivas identificadas frente a la pregunta del usuario.

Generacién paralela de borradores y proceso de verificaciéon. Cada subconjunto de
documentos d; se proporciona como entrada a una instancia del modelo borrador Mp;after,
junto con la pregunta original (). Para cada subconjunto, Mpraster genera una respuesta
tentativa «; y su correspondiente justificacion o razonamiento (racional) §;, que explica
como se lleg6 a «; a partir de §;. Wang et al. [78] sefialan que los modelos Mprafter
pueden ser Fine-Tuneados para generar esta dupla de respuesta y racional. Este proceso
de generacion de m pares (o, fj) se puede realizar en paralelo, lo que constituye una de
las fuentes de optimizaciéon de tiempo. Ver prompt exacto para la generacion de borradores
en el Apéndice 7.5

Posteriormente, el modelo generalista Myerifier, que no requiere un fine-tuning especifico
para esta tarea de evaluacion, procesa cada par (o ,[;). Para cada uno, se computan
tipicamente tres puntuaciones (scores) distintas que contribuyen a un score de confianza
global p;:

= p}iraft: Mide la confianza o probabilidad con la que Mpyafter generd el par (aj, 3;)

dado Q y 6.7 Formalmente PMDrafter (ﬁj ‘ Q’ 63) + PMDrafter (Oé] ’ Q’ 5]’ ﬁ])

= pj.elf‘contain: Evalta la coherencia interna del par (a;, ;) generado por
Mbratter PMpyasier (aja Bj | Q, 5J)

= p?elf‘reﬂe“: Captura la evaluacion que hace Myerifier sobre la calidad del racional j3;
como soporte para la respuesta «;. Esto se obtiene de la probabilidad con la que
Mrjerifier genera una afirmacion positiva (e.g., ”Si”) en respuesta a una meta-pregunta
como: ";Considera que la justificaciéon 3; apoya adecuadamente la respuesta o;?”,
condicionada por @, a;, y B;. Ver prompt exacto en Apéndice 7.6.

El score final para cada borrador j se calcula como el producto de estas tres probabilidades:

draft self-contain self-reflect

Pi =P P 5

La respuesta final A del sistema se selecciona como aquella respuesta borrador «o; que
maximiza este score combinado p;.

Pseudocédigo. El procedimiento completo de Speculative RAG se detalla en el Algorit-
mo 2
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Algorithm 2 Algoritmo de Speculative RAG (Adaptado de Wang et al. [78])
Require: Pregunta @, conjunto de documentos recuperados D = {dy,ds,...,dn}
Require: Numero de clisteres k, nimero de borradores m
Ensure: Respuesta predicha A

1: function SPECULATIVERAG(Q, D, k,m)

2: E + {&(d; | Q) para cada d; € D} > Embeddings instruidos
3: {C4,...,C} + KMeans(E, k) > Clustering en k grupos
4: A+ > Subconjuntos de documentos
5: for j =1tomdo

6: d; < {SampleOne(C)) para cada l =1...k} > Un doc por cluster
7 A+ AU {5]}

8: B+ 0 > Lista de borradores con scores
9: for all ; € A in parallel do

10: (0, Bj) < Mpragter(Q, 65) > Respuesta y racional
11: Pt P(B; | Q,85) + Plaj | Q,65)

19 p§e1f—c0ntain « P(a]’, ﬂj | Q, 5]')

B g Py (Yes' | Q)

14: pj p;iraft X p;elf-contain X p;elf-reﬂect

15: B(—BU{(aj,pj)}

16: (A, )« arg MAX(q; p,)eB Pj > Seleccion final
17: return A

Limitaciones computacionales de Speculative Rag

A pesar de sus beneficios en términos de eficiencia en la etapa de generacion y la promo-
ciéon de la diversidad semantica, Speculative RAG presenta una limitacién computacional
clave. Como se menciono, el uso de embeddings instruidos por la pregunta @ (e.g., £(d; | Q)
con InBedder-RoBERTa) es fundamental para la calidad del clustering y, por ende, para
la efectividad del muestreo de documentos y el razonamiento posterior. La importancia de
este condicionamiento se demuestra empiricamente en Wang et al. [78, Seccion 3.2].

El problema principal radica en que el calculo de estos embeddings instruidos debe
realizarse en linea (online), es decir, por cada nueva consulta @@ que formula el usuario
y para la totalidad de los documentos d; recuperados para esa consulta. Esto se debe
a que los embeddings son, por diseno, dependientes de (). A diferencia de los sistemas
de recuperacién tradicionales donde los embeddings de los documentos se precomputan
y se almacenan en un indice, aqui el condicionamiento por () impide este pre-computo
directo. En términos practicos, esto significa que cada vez que un usuario formula una nueva
pregunta, el sistema se ve obligado a ejecutar el costoso modelo de embeddings instruidos
sobre todos los documentos recuperados. En escenarios con miiltiples usuarios concurrentes
o un alto volumen de consultas, y especialmente si el nimero de documentos recuperados
N es grande, la carga computacional de esta etapa puede volverse prohibitiva y constituir
el principal cuello de botella del pipeline. Este costo computacional afecta negativamente
la aplicabilidad del método en contextos que demandan baja latencia, como asistentes
conversacionales o sistemas de bisqueda interactiva. La propuesta de Efficient Speculative
RAG en esta tesis (detallada en la Seccion 5.1) busca mitigar precisamente este cuello
de botella mediante la integracion de las preguntas representativas generadas por KRAQ),
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permitiendo un pre-cémputo efectivo de los embeddings instruidos.

2.3. Generacion automatica de preguntas

La Generacion Automatica de Preguntas (QG, por sus siglas en inglés) es una tarea
del PLN que consiste en crear preguntas textuales a partir de diversas modalidades de
entrada, tales como texto, datos estructurados o incluso imagenes, las cuales denotamos
genéricamente como X' [25]. Dado un input X, y opcionalmente una respuesta especifica A
(ya que algunas tareas de QG son conscientes de la respuesta y otras no), el objetivo de la
QG es aprender una funcién de mapeo fy que genere una pregunta textual ). Formalmente,
la tarea puede expresarse como:

fo: (X, A") = Q (2.3)

donde A* indica que la respuesta es un input opcional. La pregunta generada Q = (g1, q2, - - -
est4 compuesta por una secuencia de n tokens g;, seleccionados de un vocabulario predefi-
nido V. En la practica, la funcion fy se implementa cominmente mediante arquitecturas de
redes neuronales, tales como RNNs [18], modelos basados en la arquitectura Transformer
o LLMs [17, 75]

2.3.1. Aplicaciones

La QG ha demostrado ser una herramienta versatil en multiples 4dreas del procesamien-
to del lenguaje natural, extendiendo su utilidad desde sistemas tradicionales de pregunta-
respuesta hasta entornos educativos y conversacionales.. A continuacién, se describen en
detalle las aplicaciones en las que QG ha generado impacto, culminando con la propuesta
central de esta tesis: su incorporacién estratégica en pipelines de RAG.

Datasets QA. Uno de los usos mas consolidados de QG es en la generacion de datos
sintéticos para entrenar sistemas de QA. Dado que la creacion manual de pares pregun-
ta-—respuesta es costosa y limitada en escala, la generacién automaética permite ampliar
significativamente los datasets disponibles [18|. Esta estrategia permite, en la practica,
construir asistentes y chatbots mas robustos y precisos, al nutrir los sistemas con datos de
entrenamiento mas diversos y abundantes.

Educacion personalizada y tutoria inteligente. En el &mbito educativo, QG permite
adaptar la generacién de preguntas al contenido y nivel del estudiante. Los sistemas de
tutoria inteligente (Intelligent Tutoring Systems, ITS) pueden utilizar QG para generar
encuestas, ejercicios o evaluaciones alineadas con el progreso individual del alumno [54].
Por ejemplo, Bull2Sum [23] no solo produce preguntas relevantes para textos educativos,
sino que también contribuye a la construcciéon de datasets pedagogicos significativos. Esto
se traduce en experiencias de aprendizaje mas dinamicas y personalizadas, con un impacto
positivo en la comprensiéon y retencién del contenido.

Sistemas conversacionales. Los asistentes virtuales, bots de atencién al cliente y pla-
taformas de didlogo interactivo se benefician de QG para mantener conversaciones fluidas
y naturales al proponer siguientes preguntas posibles del usuario. La capacidad de gene-
rar preguntas de seguimiento pertinentes y contextualizadas mejora significativamente la

+n)



2.3. Generacion automética de preguntas 19

calidad de la interaccion [16]. El trabajo de Pan et al. [57] sobre generacion de preguntas
conversacionales (Conversational Question Generation, CQG) resalta la importancia de
incorporar el historial del didlogo y el contexto seméntico en la generacién de preguntas,
haciendo que las respuestas y preguntas formuladas por el sistema sean méas coherentes y
humanas, y evitando asi interacciones repetitivas o poco atractivas.

Optimizacion de sistemas RAG. Una de las aplicaciones clave es el uso de la generaciéon
de preguntas para optimizar sistemas RAG. El sistema KRAQ, propuesto en este trabajo,
produce preguntas representativas que condensan teméticamente el contenido del corpus
y permiten mejorar los sistemas RAG en dos dimensiones principales:

= Mejora de la precisién y cobertura semantica: Mediante la estrategia de re-
cuperacion combinada (Combined Retrieve RAG, detallada en la Seccion 4.1), las
preguntas de KRAQ se utilizan como consultas complementarias que amplian y di-
versifican el conjunto de documentos recuperados. Se hipotetiza que esto proporciona
al LLM un contexto més rico y variado, lo que conduce a una mejora en la precision
v la cobertura semantica de las respuestas generadas.

= Mejora de la eficiencia computacional: En el contexto de Speculative RAG
(explicado en la Seccion 5.1), las preguntas representativas de KRAQ permiten el
pre-computo de embeddings instruidos. Esta optimizacion, denominada Efficient Spe-
culative RAG, esta disenada para reducir la latencia del algoritmo al evitar el costoso
célculo de embeddings en linea para cada consulta del usuario.

Este enfoque posiciona a la QG no solo como una herramienta generativa per se, sino como
un componente estratégico dentro del pipeline de recuperacién y generacion, orientado a
mejorar tanto la calidad como la eficiencia de los sistemas RAG.

2.3.2. Avances recientes

La generacion automética de preguntas (QG) puede abordarse a partir de distintos
tipos de datos de entrada, como informacion estructurada (proveniente de grafos de cono-
cimiento o bases de datos), elementos visuales (imagenes, videos) o, como es méas frecuente
y relevante para este trabajo, texto no estructurado [25]. Mientras que la QG a partir de
entradas estructuradas suele emplear modelos como los Graph2Seq [4, 10] y la QG visual
se apoya en arquitecturas multimodales [9, 83|, esta tesis se enfoca exclusivamente en la
generacion de preguntas desde texto libre, modalidad conocida como Text-based Question
Generation (TQG).

La TQG ha evolucionado significativamente en los tltimos anos, impulsada por el
avance de los modelos de lenguaje preentrenados (PLMs) y, méas recientemente, por los
LLMs. Inicialmente, los modelos de TQG seguian el paradigma clésico de secuencia a
secuencia (Seq2Seq), empleando arquitecturas basadas en RNNs (como LSTMs o GRUs)
[18]. Posteriormente, la arquitectura Transformer |75 fue adoptada para mejorar la captura
de dependencias de largo alcance en el texto de entrada [76]. Sin embargo, estos enfoques,
aunque pioneros, presentaban limitaciones al procesar documentos extensos debido a la
complejidad cuadratica de la auto-atencién o a la dificultad de las RNNs para mantener
informacion a través de secuencias muy largas. Ademés, a menudo sufrian problemas de
sobreajuste debido a la relativa escasez de datos de entrenamiento especificos y de alta

calidad para QG.
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El surgimiento de modelos preentrenados masivos como T5 [65], BART [39], y UNILM
[17], entre otros, marcoé un punto de inflexion. Estos modelos, entrenados en vastos corpus
textuales con objetivos auto-supervisados (como la prediccion de palabras enmascaradas o
la decodificacion de secuencias), aprenden representaciones lingiiisticas ricas y generaliza-
bles. Esto permiti6 su posterior fine-tuning sobre tareas de QG con conjuntos de datos mas
pequenos, logrando mejoras sustanciales en la fluidez, coherencia y precision seméntica de
las preguntas generadas.

Dentro de esta linea, trabajos recientes han explorado arquitecturas més sofisticadas
y mecanismos de control. Por ejemplo, SG-CQG [16] para la generacion de preguntas
conversacionales y MultiFactor [81] para QG con planificacion de contenido multinivel,
investigan arquitecturas modulares, el control explicito del tipo de pregunta y la incor-
poracion de mecanismos de planificacién seméantica. Estos esfuerzos buscan aumentar la
relevancia, la diversidad y la complejidad de las preguntas generadas, yendo més alla de la
simple transformacion sintéctica del texto de entrada.

Paralelamente, se ha observado una tendencia creciente hacia el uso de representaciones
estructuradas intermedias, como grafos seménticos o redes de entidades extraidas del texto
fuente, para enriquecer el contexto y mejorar la seleccién de contenido relevante para
la QG |21, 58]. Esta integracion de representaciones estructuradas (derivadas del texto
no estructurado) con modelos de generacion constituye una linea de trabajo que conecta
directamente con el enfoque propuesto en esta tesis, donde el grafo de conocimiento juega
un papel central.

Con la llegada de los LLMs de ultima generacion, como los de la familia GPT |8,
55], se ha explorado la generacion de preguntas bajo esquemas de zero-shot (sin ejemplos
especificos de la tarea) y few-shot (con unos pocos ejemplos) utilizando técnicas de in-
contezt learning y prompt engineering [42|. Estos modelos ofrecen ventajas notables en
términos de generalizacion y flexibilidad, ya que pueden generar preguntas para una amplia
variedad de contextos sin necesidad de un fine-tuning especifico. No obstante, atin presentan
desafios en el control fino de la generacion (e.g., asegurar que la pregunta sea sobre un
aspecto particular del texto), en la cobertura teméatica exhaustiva de corpus extensos, y en
la interpretabilidad del proceso generativo.

En esta tesis, nos situamos dentro de esta tiltima ola de desarrollos, proponiendo un en-
foque hibrido. Se aprovecha la potencia generativa de los modelos preentrenados (mediante
fine-tuning especifico), pero como novedad se incorpora un pipeline estructurado que utili-
za grafos de conocimiento y la detecciéon de comunidades seméanticas. Esta estructuraciéon
previa del corpus permite guiar la generaciéon de preguntas de manera que se logre una
cobertura tematica mas balanceada y representativa del contenido global, optimizando asi
su utilidad posterior en la mejora de sistemas RAG, como se detalla en el Capitulo 3.

2.4. Grafos de Conocimiento y deteccion de comunidades

Los métodos propuestos en esta tesis, particularmente el sistema KRAQ, se fundamen-
tan en la capacidad de transformar corpus textuales en representaciones estructuradas que
facilitan un anélisis seméntico profundo y la identificaciéon de agrupaciones tematicas. En
esta seccion, se describen dos pilares conceptuales para este proceso: los Grafos de Cono-
cimiento (KGs) como formalismo para representar informacion semantica, y el Clustering
en Grafos como técnica para descubrir comunidades cohesivas dentro de estas estructuras.
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2.4.1. Grafos de Conocimiento

Los Grafos de Conocimiento (Knowledge Graphs, KGs) se han consolidado como una
poderosa herramienta para representar informacién de manera estructurada, capturando
entidades del mundo real y las complejas relaciones que existen entre ellas. A diferencia
de las bases de datos relacionales tradicionales o el texto no estructurado, los KGs ofrecen
una representacion semantica rica, interpretable y facilmente navegable, lo que facilita el
razonamiento y el descubrimiento de conocimiento [30, 53].

Definiciéon y estructura

Formalmente, un grafo de conocimiento se define cominmente como un conjunto de
tripletas factuales de la forma (h,r,t), donde h (entidad cabeza o head) y t (entidad
cola o tail) son nodos que representan entidades (e.g., personas, organizaciones, lugares,
conceptos, eventos), y 7 es una arista dirigida y etiquetada que representa la relacion
semantica que vincula a h con t (e.g., nacié_en, es_miembro_de, causa_ de). Por lo tanto,
un KG puede modelarse como un multigrafo dirigido y etiquetado G = (V, E, L), donde
V es el conjunto de nodos (entidades), E es el conjunto de aristas (relaciones), y L es un
conjunto de etiquetas para esas relaciones.

Esta estructura permite una representacion explicita del conocimiento que va més alla
de la simple coocurrencia de palabras, capturando el significado y el contexto de las inter-
acciones entre entidades.

Construccion de Grafos de Conocimiento

La construccion de un KG, también conocida como populacion de KG, puede realizarse
a partir de diversas fuentes:

= Fuentes estructuradas y semi-estructuradas: Utilizando bases de datos exis-
tentes, hojas de célculo, o informacion de la web estructurada (e.g., tablas HTML,
infoboxes de Wikipedia). KGs a gran escala como DBpedia, YAGO o Wikidata se
han construido en gran medida a partir de este tipo de fuentes.

s Texto no Estructurado: Mediante técnicas de PLN, que incluyen:

¢ Reconocimiento de entidades nombradas (NER): Para identificar men-
ciones de entidades en el texto y clasificarlas (e.g., Persona, Organizacion, Lu-
gar).

e Extraccion de relaciones (RE): Para identificar relaciones seménticas entre
las entidades detectadas. Esto puede hacerse con enfoques basados en patrones,
aprendizaje automatico supervisado, o0 més recientemente, mediante Open In-
formation Extraction (OpenlE) o el uso de LLMs para generar tripletas (h,r,t)
directamente a partir de oraciones. Por ejemplo, de la oraciéon ”Albert Einstein
formulo la teoria de la relatividad”, se podria extraer la tripleta (Albert Einstein,
formuld, teoria de la relatividad).

En los ultimos anos, ha habido un interés creciente en la construccién de KGs “orientados a
la tarea” o "contextuales”, donde el grafo se construye o se adapta dinaAmicamente para ser
relevante para una consulta o un conjunto de documentos especifico, en lugar de intentar
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modelar todo el conocimiento universal [87|. Esta aproximacion es particularmente rele-
vante para aplicaciones como RAG, donde se busca sintetizar un contexto estructurado a
partir de un subconjunto de documentos recuperados. En esta tesis, como se detallara en la
Seccion 3.1, se utiliza el framework GraphRAG [19], que emplea LLMs para la extraccion
de entidades, relaciones y afirmaciones a partir de un corpus textual para construir un KG.

Integraciéon con LLMs y sistemas RAG

La integracion de KGs con LLMs y, especificamente, con sistemas RAG, es un &rea
de investigacion activa y prometedora que busca combinar lo mejor de ambos mundos: la
capacidad de razonamiento estructurado y el conocimiento factual explicito de los KGs con
la fluidez generativa y la comprension del lenguaje natural de los LLMs. Varias estrategias
de integracion han sido exploradas:

» KGs como fuente de recuperacion en RAG: En lugar de (o ademés de) recu-
perar pasajes de texto plano, el componente de recuperaciéon puede consultar un KG
para obtener hechos relevantes, entidades relacionadas o subgrafos que proporcionen
un contexto estructurado al LLM generador [85, 86].

= Construccion de KGs a partir de documentos recuperados: El sistema RAG
puede construir dindmicamente un KG local a partir de los documentos recuperados
para una consulta especifica. Este KG contextual puede luego ser utilizado para refi-
nar la comprension, identificar entidades clave o guiar la generacién de la respuesta.

= Uso de KGs para mejorar la Generacion: La informacién del KG puede utilizar-
se para controlar o restringir la generacion del LLM, asegurando que las respuestas
sean consistentes con los hechos del KG o que se enfoquen en entidades/relaciones
particulares.

» GraphRAG y enfoques similares: El trabajo de Edge et al. [19], denominado
GraphRAG, propone un pipeline donde se construye un KG global a partir de un
corpus. Luego, se utilizan técnicas de deteccidén de comunidades en este grafo para
identificar agrupaciones tematicas. A partir de estas comunidades (y sus restimenes
textuales generados por LLMs), se pueden realizar tareas como la sumarizacion glo-
bal del corpus o la respuesta a preguntas que requieren informacién de miltiples
documentos. Este enfoque, que sirve de base para la primera parte del pipeline de
KRAQ), demuestra céomo la estructura del KG puede guiar la sintesis de informacion
a diferentes niveles de granularidad.

En el contexto de esta tesis, la construccién de un grafo de conocimiento a partir del cor-
pus documental es el primer paso fundamental del sistema KRAQ. Este KG permite luego
identificar comunidades semanticas, generar resiimenes representativos por comunidad vy,
finalmente, producir un conjunto de preguntas que capturen la esencia tematica del cor-
pus. Estas preguntas son luego utilizadas para optimizar los sistemas RAG, demostrando
como los KGs pueden actuar como una capa intermedia crucial para una interacciéon mas
explicable, eficiente y controlada entre la recuperacion de informaciéon y la generacion de
lenguaje.
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2.4.2. Clustering en grafos

El clustering en grafos, més cominmente conocido en el analisis de redes como deteccién
de comunidades (community detection), es una tarea fundamental que busca particionar
los nodos de un grafo en grupos o clasteres. El principio es que los nodos dentro de una
misma comunidad deben estar més densa o fuertemente conectados entre si que con los
nodos pertenecientes a otras comunidades [22, 32].

Modularidad: una métrica para la calidad de las comunidades

Una de las métricas mas influyentes y ampliamente utilizadas para cuantificar la calidad
de una particién de un grafo en comunidades es la modularidad, introducida por Newman
[52]. La modularidad @ mide la fraccion de las aristas que caen dentro de las comunida-
des dadas, menos la fraccién esperada si las aristas se distribuyeran al azar manteniendo
los grados de los nodos. Un valor de modularidad positivo y alto indica una estructura
comunitaria fuerte y bien definida.

Para un grafo no dirigido con m aristas y una particiéon en ¢ comunidades, la modula-

ridad se define como: . -
_ - o haly
Q=53 45— 5

Y]

} 6(Ci, Cj)

donde:

= Aj; es un elemento de la matriz de adyacencia del grafo (1 si hay una arista entre el
nodo i y el nodo j, 0 en caso contrario).

k; es el grado (nimero de conexiones) del nodo 1.
=M= %ZZ ki es el numero total de aristas en el grafo.

= C; es la comunidad a la que pertenece el nodo 1.

d(C4, Cj) es la funcion delta de Kronecker, que es 1 si C; = C; (es decir, si los nodos
iy j estan en la misma comunidad) y 0 en caso contrario.

El término k;fj representa la probabilidad esperada de que exista una arista entre los
nodos ¢ y j en un grafo aleatorio con la misma distribucion de grados (modelo nulo de
configuracion). Muchos algoritmos de deteccion de comunidades buscan maximizar esta

métrica Q.

Algoritmos destacados: Louvain y Leiden

Entre la vasta gama de algoritmos de detecciéon de comunidades, dos métodos heuris-
ticos basados en la optimizacién de la modularidad han ganado gran popularidad debido
a su eficiencia y efectividad en grafos grandes:

Algoritmo de Louvain: Propuesto por Blondel et al. [5], el método de Louvain es un
algoritmo aglomerativo y jerarquico que opera en dos fases iterativas:

1. Optimizacion local de la modularidad: Para cada nodo, se considera mo-
verlo a cada una de las comunidades de sus nodos vecinos. El nodo se asigna
a la comunidad que resulta en el mayor incremento positivo de la modularidad
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global. Esta fase se repite para todos los nodos hasta que no se puedan realizar
mas movimientos que mejoren la modularidad.

Agregacion de la red: Se construye un nuevo grafo donde cada comunidad
identificada en la fase anterior se convierte en un tinico supernodo. Las aristas
entre los nuevos supernodos se ponderan segin la suma de las aristas entre los
nodos de las comunidades correspondientes.

Estas dos fases se repiten hasta que la modularidad ya no puede incrementarse sig-
nificativamente. La eficiencia y simplicidad del método de Louvain lo han convertido
en un estandar de facto para el analisis de comunidades en redes grandes.

Algoritmo de Leiden: Introducido por Traag et al. [72] como una mejora significati-

va sobre el algoritmo de Louvain, el método de Leiden fue disenado para abordar
algunas de las limitaciones teéricas y practicas de su predecesor, resultando en par-
ticiones comunitarias de mayor calidad y més robustas. Si bien Leiden también es
un algoritmo aglomerativo jerarquico que busca optimizar la modularidad, introduce
modificaciones cruciales en sus fases operativas:

1. Movimiento local de nodos: Similar a Louvain, los nodos se mueven inicial-

mente a comunidades vecinas si tal movimiento incrementa la modularidad. Sin
embargo, Leiden pone mas énfasis en explorar el vecindario de cada nodo de
manera més exhaustiva.

Refinamiento de la particion (fase clave de mejora): Esta es una de las
innovaciones principales. Después de una fase inicial de movimiento de nodos,
Leiden toma cada comunidad formada y intenta subdividirla recursivamente.
El algoritmo intenta refinar cada comunidad individualmente, buscando subes-
tructuras que puedan ser comunidades por si mismas. Solo si una comunidad
no puede ser dividida de forma que se incremente la modularidad, se considera
una unidad cohesiva. Este paso ayuda a evitar que los nodos queden "atrapados”
en comunidades grandes pero poco densas, un problema que a veces afecta a
Louvain.

Agregacion de la red basada en particiones refinadas: Una vez que las
comunidades han sido refinadas (y posiblemente divididas), la red se agrega.
Los nodos se agrupan en estas comunidades refinadas, y solo aquellas comuni-
dades que no pudieron ser descompuestas mas (es decir, son bien cohesivas) se
consideran para la siguiente iteracién de agregacion de la red.

Ambos algoritmos son altamente eficientes y escalables, lo que permite su aplicacién a
grafos con millones de nodos y aristas, como los que pueden derivarse de grandes corpus

textuales.

2.5.

Trabajos relacionados a la tesis

En esta seccién, se analizan con mayor detalle los trabajos previos que guardan una

relacién mas cercana con las problematicas abordadas y las soluciones propuestas en esta
tesis. Se busca establecer un didlogo con el estado del arte, identificando tanto las inspira-
ciones como los puntos de divergencia que definen la originalidad y el aporte de KRAQ y
sus aplicaciones.
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2.5.1. Trabajos similares en generaciéon de preguntas

Si bien la generacion automatica de preguntas (QG) es un campo amplio, varios traba-
jos recientes se alinean con los objetivos y/o metodologias de esta tesis, particularmente
aquellos que utilizan representaciones estructuradas del conocimiento o buscan generar pre-
guntas representativas de un corpus. A continuacién, analizamos dos trabajos relevantes
que abordan la QG desde perspectivas metodologicamente afines: SG-CQG [16] y Savaal
[54].

SG-CQG: generacion de preguntas conversacionales sin respuesta conocida Do
et al. [16] presentan SG-CQG, un framework para la generacion de preguntas conversacio-
nales (CQG) en un escenario answer-unaware. Su método se desarrolla en dos etapas:

1. Seleccion del Contenido a Preguntar (what-to-ask): Se construye un grafo
seméntico local a partir de un documento para identificar y seleccionar una oracién
pertinente, denominada racional, como base para la pregunta.

2. Formulacién de la Pregunta (how-to-ask): Con el racional seleccionado, se
utiliza un clasificador para determinar el tipo de pregunta y luego modelos T5 generan
la pregunta final, asegurando la coherencia conversacional.

Diferencias procedimentales con KRAQ: A pesar de la inspiracién compartida en el
uso de grafos, los procedimientos divergen. SG-CQG opera sobre un grafo de un documento
individual para seleccionar una oracion especifica. KRAQ (como veremos en el Capitulo
2, en cambio, construye un grafo global del corpus para identificar comunidades temdti-
cas enteras, generando preguntas a partir de restimenes de estas, lo que representa una
abstracciéon de mayor nivel.

Savaal: generacion escalable de preguntas orientadas a conceptos Noorbakhsh
et al. [54] proponen Savaal, un sistema de QG escalable para material educativo. Su pipeline
consiste en:

1. Identificacion de conceptos clave: Se extraen y clasifican ideas centrales del
corpus mediante un proceso distribuido.

2. Recuperacion de evidencia contextual: Para cada concepto, se recuperan pasa-
jes textuales relevantes con un retriever denso.

3. Generacion de preguntas pedagoégicas: Un LLM genera preguntas a partir de
los conceptos y los pasajes recuperados para evaluar la comprension.

Diferencias procedimentales con KRAQ: Si bien ambos buscan generar preguntas a
partir de unidades teméticas, los métodos difieren. Savaal identifica conceptos clave sin
depender de un grafo global ni de clustering. KRAQ, por el contrario, define sus unidades
teméticas a través de la deteccion de comunidades en el grafo de conocimiento del corpus.
Ademas, KRAQ genera preguntas a partir de un resumen cohesivo de la comunidad, un
nivel de agregaciéon superior al de Savaal, que combina un concepto aislado con pasajes de
texto.

Posicionamiento de KRAQ Los trabajos de SG-CQG y Savaal ilustran el potencial
de usar abstracciones semanticas para guiar la QG. KRAQ se distingue por su pipeline
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integral que parte de un grafo de conocimiento global. La identificaciéon de comunidades,
la sintesis de resiimenes y la posterior generacién de preguntas con un LLM fine-tuneado
constituyen un flujo metodologico especifico. La principal novedad de KRAQ es cémo este
conjunto de preguntas se convierte en un activo para optimizar sistemas RAG (Combined
Retrieve RAG y Efficient Speculative RAG), un diferenciador clave de esta tesis.

2.5.2. Trabajos similares en RAG

Para incrementar la robustez y la cobertura semantica en la fase de recuperacién, una
linea de investigacion significativa se ha centrado en el uso de miltiples formulaciones de la
consulta original. Al diversificar las biisquedas, se busca construir un contexto documental
méas completo. A continuacién, se revisan trabajos clave en esta linea.

RAG-Fusion Propuesto por Rackauckas [63], este enfoque sigue los siguientes pasos:

1. Se generan automaticamente diversas reformulaciones de la pregunta original del
usuario utilizando un LLM.

2. Cada reformulacién se emplea para realizar una bisqueda independiente en el corpus
documental.

3. Los conjuntos de documentos recuperados se consolidan y se reordenan mediante
Reciprocal Rank Fusion (RRF) para destacar la evidencia méas robusta.

Diferencias procedimentales con Combined Retrieve RAG: La principal diferen-
cia radica en el origen y la naturaleza de las consultas adicionales. RAG-Fusion genera
reformulaciones de la pregunta del usuario en tiempo real (online), lo que incrementa la
latencia. Combined Retrieve RAG, en cambio, utiliza un conjunto de preguntas represen-
tativas de KRAQ que han sido pre-generadas offiine, lo que optimiza la eficiencia al evitar
la generacién de consultas en tiempo de ejecucion.

DMQR-RAG Presentado por Li et al. [41], este método busca aprovechar multiples con-
sultas de la siguiente manera:

1. Se aplica un conjunto controlado de transformaciones semanticas (generalizacion,
especificacion, etc.) sobre la consulta original para inducir diversidad.

2. Las variantes mas prometedoras son seleccionadas de forma adaptativa.
3. Estas variantes se emplean en las etapas de recuperaciéon y generacion.

Diferencias procedimentales con Combined Retrieve RAG: Mientras DMQR-RAG
aplica un conjunto de transformaciones genéricas predefinidas a la pregunta del usuario,
Combined Retrieve RAG utiliza consultas que se derivan de la estructura semdntica in-
trinseca del corpus. Las preguntas de KRAQ no son simples reformulaciones, sino repre-
sentaciones de los temas centrales del corpus, aspirando a una cobertura tematica mas
significativa.

Posicionamiento de Combined Retrieve RAG (contribucion de esta tesis) El
método Combined Retrieve RAG, detallado en la Seccion 4.1, se inspira en la idea cen-
tral de estos enfoques de multiples consultas, pero se diferencia fundamentalmente en su
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estrategia. En lugar de generar reformulaciones en linea (como RAG-Fusion) o aplicar
transformaciones genéricas (como DMQR-RAG), nuestra propuesta utiliza un conjunto de
preguntas representativas QX generadas por el sistema KRAQ (ver Capitulo 3). Estas pre-
guntas, al derivarse de la estructura semantica profunda del corpus, ofrecen una diversidad
seméntica controlada y teméaticamente alineada. Se busca as{ un balance entre la diversi-
ficacion contextual y la eficiencia computacional, proporcionando una cobertura tematica
maés significativa que las alternativas puramente sintacticas o genéricas.



3. KRAQ

Como se introdujo en el Capitulo 2, y para abordar las limitaciones discutidas en
la Introduccion (Capitulo 1), esta tesis propone KRAQ (Knowledge-graph Representative
Automatic Questions). Este capitulo detalla la metodologia detras de KRAQ), un sistema
disenado para construir un conjunto de preguntas semanticamente representativas a partir
de un corpus textual, sentando las bases para las optimizaciones de RAG que se exploraran
en capitulos posteriores. Primero, se describird su arquitectura y componentes metodolé-
gicos, seguido de una presentacién exhaustiva de su disefio experimental, implementaciéon
y los resultados obtenidos en la generaciéon de dichas preguntas.

3.1. Metodologia de KRAQ

El sistema KRAQ (Knowledge-graph Representative Automatic Questions), nicleo de
esta tesis, introduce una arquitectura novedosa para optimizar los sistemas RAG. La in-
tuiciéon fundamental es que, al modelar la estructura semantica profunda de un corpus y
generar a partir de ella un conjunto de preguntas representativas, podemos anticipar y
alinearnos mejor con las posibles consultas de un usuario. Estas preguntas, extraidas de
la esencia teméatica del corpus, no solo ofrecen una forma de condensar el conocimiento
documental, sino que actiian como herramientas estratégicas. Especificamente, permiten
enriquecer la diversidad y precision de la informacién recuperada y optimizar la eficiencia
computacional de los pipelines RAG, abordando asi algunas de sus limitaciones clave.

KRAQ), cuyo pipeline general se ilustra en la Figura 3.1, transforma un corpus do-
cumental en este valioso conjunto de preguntas representativas a través de la siguiente
secuencia de etapas:

1. Extracciéon de conocimiento: Se procesa el texto para identificar y extraer en-
tidades, relaciones y afirmaciones clave, sentando las bases para una representaciéon
estructurada.

2. Construcciéon del grafo de conocimiento: La informacién extraida pasa por un
proceso de desambiguacién y se integra en un grafo, donde las entidades son nodos
v las relaciones aristas, capturando las conexiones del corpus.

3. Deteccidon de comunidades seméanticas: Sobre este grafo, se aplican algoritmos
de clustering (Leiden) para identificar comunidades de nodos densamente conectados,
que representan agrupaciones tematicas coherentes.

4. Sintesis de resimenes comunitarios: Para cada comunidad detectada, se genera
un resumen textual que condensa su contenido teméatico principal.

5. Generacion de preguntas representativas: Finalmente, estos resimenes comuni-
tarios se utilizan como entrada para un modelo de lenguaje fine-tuneado, que produce
una pregunta representativa para cada comunidad.

28



3.1. Metodologia de KRAQ 29

Corpus de Texto

LLM LLM Fine-

Tuneado

Creacidn de Grafo de Generacién de Resumenes Generacion de Preguntas por
Conocimiento y Deteccion de por Comunidad Resumen

Comunidades

Entidad A
Entidad B

Relacién A-B

Entidad C
Relacién A-C

Extraccion de Entidades y Relaciones

Fig. 3.1: Diagrama del pipeline metodologico de KRAQ: desde el corpus de documentos hasta la
generacion de preguntas representativas por comunidad.

Es fundamental destacar que las primeras cuatro etapas de este pipeline (desde la
extraccion de conocimiento (Ira) hasta la sintesis de restimenes comunitarios (4ta)) se
implementan utilizando y adaptando el robusto framework GraphRAG, propuesto por
Edge et al. [19]. La adopcion de GraphRAG para estos pasos iniciales nos proporciona
una base metodologica soélida, reproducible y validada para la construcciéon del grafo de
conocimiento, la identificacién de comunidades y la generaciéon de sus correspondientes
resimenes textuales.

La contribuciéon central y novedosa de esta tesis, y por ende el niicleo dis-
tintivo de KRAQ), reside en la quinta y tltima etapa: la generaciéon de un conjunto
de preguntas representativas a partir de dichos resiimenes comunitarios. Esta transforma-
cion de restimenes en preguntas se realiza mediante un modelo de lenguaje especificamente
fine-tuneado para esta tarea. Mientras GraphRAG utiliza sus resimenes para responder
directamente a consultas externas, KRAQ va un paso mas alla al convertir estos resimenes
en un nuevo activo que como se demostrara posteriormente, puede ser utilizado para la
optimizacion de sistemas RAG.

En las siguientes secciones, se detallara cada uno de los componentes y procesos que con-
forman el sistema KRAQ. Para ilustrar de manera concreta como opera KRAQ), seguiremos
un ejemplo tematico centrado en el ecosistema de la educacion superior y la investigacion
en Argentina, cuyas entidades principales son la Universidad de Buenos Aires (UBA) y el
Premio Nobel.

3.1.1. Extraccion de entidades y relaciones con GraphRAG

La primera etapa del pipeline, llevada a cabo mediante el framework GraphRAG, con-
siste en convertir un corpus documental en una representaciéon semantica estructurada
mediante la extraccion de entidades, relaciones y afirmaciones relevantes. Esta representa-
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cioén constituye la base para la posterior construccion del grafo de conocimiento.

El proceso, tal como lo implementa GraphRAG, inicia con la fragmentacion del cor-
pus en segmentos de longitud fija, denominados chunks. Esta divisién busca asegurar una
cobertura contextual adecuada y, al mismo tiempo, respetar las restricciones inherentes al
tamano de contexto de los LLMs [37, 45|. Cada uno de estos chunks es tratado como una
unidad seméntica fundamental de la cual se extraera conocimiento estructurado.

Sobre cada chunk, GraphRAG aplica un LLM mediante el uso de prompts especifica-
mente disenados para la deteccién y caracterizaciéon de tres tipos principales de elementos
semanticos:

» Entidades: Se identifican junto con su nombre, su tipologia (e.g., persona, orga-
nizacion, lugar) y una descripcion concisa de sus atributos y actividades relevantes
dentro del contexto del fragmento.

= Relaciones: Se detectan las conexiones significativas entre pares de entidades pre-
viamente identificadas. Estas relaciones se representan formalmente como triplas
dirigidas (entidad origen, tipo de relacion, entidad destino), acompanadas de una
descripcion textual que explica la naturaleza del vinculo.

» Afirmaciones (claims): Se extraen proposiciones facticas que condensan hechos,
eventos o condiciones notables mencionados en el texto y asociados a las entidades o
sus relaciones.

La utilizacién de LLMs para esta tarea ha demostrado ser una aproximacion eficiente [90].
Los prompts exactos empleados por GraphRAG se detallan en el apéndice de su publicacién
original [19].

Texto Original del Chunk
“La Universidad de Buenos Aires (UBA), fundada en 1821, es una de las instituciones educativas
maés prestigiosas de Ameérica Latina. Varios premios Nobel han sido egresados de esta universidad
publica argentina.”

Tipo de Elemento Informacion Extraida
Entidades

Nombre: Universidad de Buenos Aires

Tipo: Institucion Educativa

Descripcion: Universidad publica argentina.

Nombre: Premio Nobel

Tipo: Distincion

Descripcion: Galardén que ha sido recibido por egresados de la UBA.

Relaciones
Cabeza (Head): Universidad de Buenos Aires
Cola (Tail): Premio Nobel

Relacion: ha formado egresados que han recibido

Afirmaciones (Claims)
e La Universidad de Buenos Aires (UBA) fue fundada en 1821.

e La UBA es una de las instituciones educativas mas prestigiosas de
Ameérica Latina.

e Egresados de la UBA han recibido premios Nobel.

e La UBA es una universidad publica argentina.

Fig. 3.2: Ejemplo ilustrativo de la extraccion de informaciéon semantica a partir de un chunk sobre
la UBA y Premios Nobel, tal como la realizaria GraphRAG. Se identifican entidades clave,
sus relaciones y afirmaciones.
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Continuando con nuestro ejemplo conductor, la Figura 3.2 muestra céomo, a partir de
un chunk que menciona a la "Universidad de Buenos Aires (UBA)” y los "Premios Nobel”,
GraphRAG extraeria las entidades correspondientes, sus tipos, descripciones, la relacién
"ha formado egresados que han recibido”, y varias afirmaciones relevantes. Dicho formato
de salida captura la informacién seméntica clave que establece las bases para la siguiente
etapa.

Reflexion iterativa para la mejora de cobertura en GraphRAG. Es comiin que en
la extraccién inicial de entidades, ciertos elementos menos evidentes sean omitidos. Para
mitigar esto, GraphRAG emplea una técnica de self-reflection [48]. Una vez realizada la
extraccion, la salida se reenvia al LLM, solicitdndole que identifique y justifique elementos
relevantes omitidos, mediante prompts como:

“;i Qué entidades o relaciones relevantes no fueron extraidas previamente? Jus-
tifique su relevancia.”

Este ciclo puede repetirse. Para un analisis detallado de esta técnica en GraphRAG, con-
stltese [19], Apéndice A.2.

3.1.2. Construcciéon del grafo de conocimiento con GraphRAG

Una vez extraidas las entidades, relaciones y afirmaciones desde los chunks de texto, el
siguiente paso, también gestionado por GraphRAG, consiste en integrar esta informacién
en un grafo de conocimiento. Este grafo, que para KRAQ es fundamental, servird de base
para el clustering y la generacién de resimenes.

Abstraccion semantica y agregacion en GraphRAG La informacion extraida por
GraphRAG (entidades, relaciones, afirmaciones) puede considerarse una forma de resumen
abstracto del contenido de los chunks [19]. Dado que los documentos se fragmentan, una
misma entidad o relaciéon puede detectarse miultiples veces.

Para construir el grafo, GraphRAG primero realiza un proceso de desambiguaciéon de
entidades (entity disambiguation), crucial para asegurar que cada entidad tnica corres-
ponda a un unico nodo. Esta implementacion en GraphRAG utiliza estrategias de normali-
zacion y unificacion, comenzando con la coincidencia de cadenas (string matching) [12, 20].
Asi, para nuestro ejemplo, si "Universidad de Buenos Aires” y "UBA” aparecen, GraphRAG
evalia su unificaciéon bajo un solo nodo si su similitud léxica o semantica (potencialmente
verificada por un LLM o reglas heuristicas) supera cierto umbral.

Luego, GraphRAG agrega y combina las descripciones asociadas a cada entidad desam-
biguada. Retomando el ejemplo, las diversas menciones descriptivas de la "Universidad de
Buenos Aires” se consolidan en una descripcién concisa para el nodo UBA. Las relaciones
extraidas se convierten en aristas dirigidas, y sus descripciones se agregan para enriquecer
semanticamente el grafo. La Figura 3.3 ilustra cémo las entidades y la relacién de nues-
tro ejemplo ("UBA ha formado egresados que han recibido Premio Nobel”) se representan
graficamente.

Finalmente, las afirmaciones relevantes (claims) extraidas por GraphRAG, como “la
UBA fue fundada en 1821”7, se asocian a los nodos o aristas correspondientes del grafo,
sirviendo como anotaciones para la posterior generaciéon de restimenes.
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Universidad de Buenos Aires (UBA) Premio Nobel
— ha formado egresados
Tipo: Institucién Educativa que han recibido Tipo: Distincion

Descripcion: Universidad publica argentlna_J

Galardén que ha sido recibido

DemETrE por egresados de la UBA.

(Fundada- 1821) (Prestigiosa en A Latina)

Fig. 3.3: Ilustraciéon del grafo de conocimiento simplificado para el ejemplo de la Universidad de
Buenos Aires y el Premio Nobel, mostrando las entidades extraidas (detalladas en la
Figura 3.2) y la relacion que las vincula, como lo construirfa GraphRAG.

Representacion final

El resultado de este proceso es un grafo dirigido G = (V, E), donde:
= Cada nodo v € V representa una entidad tnica, acompanada por su descripcion.
= Cada arista e = (v;,v;) € E representa una relacion dirigida entre dos entidades.

» Las afirmaciones extraidas se almacenan como propiedades adicionales, ttiles para
tareas posteriores de resumen.

3.1.3. Deteccion de comunidades en el grafo de GraphRAG

Una vez construido el grafo de conocimiento por GraphRAG, el siguiente paso en su
pipeline (y crucial para KRAQ) es la identificacion de comunidades seménticas. Estas son
subconjuntos de entidades (nodos) fuertemente conectadas entre si que comparten una
temética o dominio comun, permitiendo organizar el contenido en regiones cohesivas.

Desde el punto de vista teorico, los grafos de conocimiento a menudo exhiben propie-
dades de redes de mundo pequeno (small-world networks) [79], con alto coeficiente de
clustering, lo que favorece la emergencia de estructuras comunitarias. La calidad de estas
estructuras puede medirse con la modularidad (ver Seccion 2.4.2) [52]. Estas agrupaciones,
o comunidades, representan conjuntos de nodos con alta densidad de conexiones internas
y baja conectividad externa, interpretables como focos tematicos.

Para realizar esta particion comunitaria, GraphRAG emplea el algoritmo Leiden [72].
Como se detalld en la Seccion 2.4.2, Leiden optimiza la modularidad y garantiza comuni-
dades con fuerte conectividad interna. GraphRAG aplica Leiden de forma jerarquica para
descubrir la estructura comunitaria a multiples niveles:

1. Deteccion de comunidades de nivel superior (Nivel 0): Leiden se ejecuta sobre
el grafo completo.

2. Subdivisiéon recursiva: Cada comunidad se trata como un subgrafo y Leiden se
aplica nuevamente para subdividirla.

3. Criterio de detencidén: La recursion se detiene al alcanzar comunidades "hoja” (no
divisibles sin pérdida de cohesion/modularidad) o un nivel de profundidad predefini-
do.

Para una descripcion detallada del algoritmo Leiden, ver Secciéon 2.4.2.
Esta estructura jerarquica es valiosa, ya que cada nivel proporciona una particion
exhaustiva y mutuamente excluyente de nodos [19], facilitando un enfoque de "divide y
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venceras’ para la generacion de resimenes. La Figura 3.4 muestra un ejemplo genérico de
esta detecciéon jerarquica. Aplicado a nuestro ejemplo conductor, la "UBA” y el "Premio
Nobel”, aunque relacionados, podrian asignarse a diferentes comunidades o a la misma en
distintos niveles jerdrquicos, segin la densidad de sus conexiones con el resto del grafo.

Fig. 3.4: Ejemplo ilustrativo de la detecciéon jerdrquica de comunidades de nivel superior (Nivel
0) utilizando el algoritmo Leiden, tal como lo aplicaria GraphRAG. (Adaptado de Edge
et al. [19], Fig. 4, Apéndice B).

En la practica, este proceso de GraphRAG transforma el grafo global en un conjunto de
particiones jerarquicas. Cada comunidad en un nivel seleccionado se considera una unidad
seméntica, base para la posterior generaciéon de restmenes por parte de GraphRAG, y
luego de preguntas por parte de KRAQ.

3.1.4. Generacion de restimenes

Una vez detectadas las comunidades semanticas dentro del grafo de conocimiento,
KRAQ genera un resumen textual por comunidad. Estos resimenes actiian como con-
densaciones interpretables del contenido temético de cada grupo de entidades, relaciones
y afirmaciones. Son fundamentales para reducir la redundancia en la representaciéon del
conocimiento y habilitar la posterior generacién de preguntas representativas.

La motivacién principal de esta etapa, tal como la implementa GraphRAG y la apro-
vecha KRAQ), es la de facilitar un resumen textual y escalable del corpus. Mientras que
enfoques tradicionales de resumen (query-focused o extractivos) se enfrentan a limites con-
textuales de los LLMs o a redundancia en los pasajes recuperados, el enfoque de KRAQ
permite resumir por partes coherentes y con semantica local fuerte aprovechando las co-
munidades en el grafo. Siguiendo un enfoque jerarquico, los resimenes de comunidades
hoja sirven como base para construir resimenes de niveles superiores, logrando una visién
global por agregacion local [19].

Para cada comunidad identificada, se construye un resumen utilizando un LLM, alimen-
tado con informacion de los nodos (entidades), las aristas (relaciones) y las afirmaciones
asociadas.

El proceso varia ligeramente segtn el nivel jerarquico de la comunidad:

= Comunidades hoja: se priorizan las entidades y relaciones de mayor centralidad
(calculada por grado), y se seleccionan en orden descendente hasta llenar el limite de
tokens de entrada del modelo.
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= Comunidades de nivel superior: si los elementos individuales no caben todos
en el contexto del modelo, se reemplazan por los resimenes ya generados de sus
subcomunidades. De este modo, se logra una agregacién bottom-up, donde los niveles
altos reflejan progresivamente una visién mas global del corpus.
En ambos casos, se utiliza un prompt de resumen (template prompt, ver 19), que guia
al modelo para que incluya temas clave, relaciones centrales y afirmaciones relevantes.

Para ilustrar como GraphRAG genera estos restimenes, consideremos que, para nuestro
ejemplo conductor, se ha identificado una comunidad semantica que agrupa a la "Univer-
sidad de Buenos Aires” con entidades relacionadas a su prestigio y los "Premios Nobel”
obtenidos por sus egresados. La Figura 3.5 detalla como, a partir de descripciones de no-
dos y afirmaciones pertinentes a esta comunidad UBA-Nobel, GraphRAG sintetizaria un
resumen.

Ejemplo: Generaciéon de Resumen para la Comunidad UBA-Premio Nobel
Componentes de la Comunidad | Informacién de Input al LLM (GraphRAG)
Nodos Clave
Entidad: “Universidad de Buenos Aires (UBA)”

Descripcion del Nodo: “Institucion educativa publica argentina, fundada en 1821,
reconocida por su prestigio en América Latina y por la
formacion de multiples personalidades destacadas.”
Entidad: “Premio Nobel”

Descripcion del Nodo: “Maximo galardén internacional otorgado anualmente por
contribuciones excepcionales en diversas areas del conoci-
miento y la paz.”

Relaciones Clave

Tipo de Relacion: “egresados__han_recibido”

Descripcion de la Relacion: “La UBA se destaca porque varios de sus egresados han
sido galardonados con el Premio Nobel a lo largo de su
historia.”

Afirmaciones (Claims)
e “La UBA es una de las universidades méas antiguas y prestigiosas de Argentina.”
e “Cinco ciudadanos argentinos han recibido el Premio Nobel, varios de ellos vinculados a la
UBA.
e “Bernardo Houssay, egresado y profesor de la UBA, fue el primer latinoamericano en recibir
un Premio Nobel en ciencias (Medicina, 1947).”

Resumen de Comunidad Generado (GraphRAG)
“Esta comunidad temaética se centra en la Universidad de Buenos Aires (UBA) y su distinguida
conexion con los Premios Nobel. Se resalta el prestigio historico de la UBA como formadora de
figuras galardonadas con este reconocimiento internacional, subrayando su impacto en el ambito
académico y cientifico, como en el caso de Bernardo Houssay.”

Fig. 3.5: Ejemplo ilustrativo de la generacién de un resumen por parte de GraphRAG para una
comunidad temética centrada en la UBA y su vinculaciéon con los Premios Nobel. E1 LLM
sintetiza la informacion clave en un texto cohesivo.

De esta manera, el proceso implementado por GraphRAG culmina con la obtencién de
un resumen textual R;, como el mostrado en la Figura 3.5, para cada comunidad C;. Estos
resiimenes R; son el punto de partida para la etapa de generacion de preguntas de KRAQ.

3.1.5. Generacion de preguntas con KRAQ

El paso final y distintivo de KRAQ consiste en transformar cada resumen comunitario
R; (obtenido de GraphRAG) en una pregunta representativa );, que capture el nicleo
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temético y conceptual de dicha comunidad.
Dado un conjunto de resimenes textuales R; asociados a cada comunidad Cj, la funcién
generadora de KRAQ es:

Qi = fo(Ry)

donde fy es un modelo de lenguaje especificamente fine-tuneado por nosotros con para-
metros 6. Es crucial destacar que, en esta etapa, KRAQ opera exclusivamente sobre el
resumen textual R;, ya que se considera que este condensa eficientemente la informaciéon
relevante de la comunidad para el propésito de generar una pregunta representativa.

Por ejemplo, tomando el resumen generado para la comunidad UBA-Premio Nobel
(mostrado en la Figura 3.5):

“Esta comunidad temdtica se centra en la Universidad de Buenos Aires (UBA) y
su distinguida conexion con los Premios Nobel. Se resalta el prestigio historico
de la UBA como formadora de figuras galardonadas con este reconocimiento
internacional, subrayando su impacto en el dmbito académico y cientifico, como
en el caso de Bernardo Houssay.”

A partir de este resumen, nuestro modelo fy de KRAQ podria generar una pregunta re-
presentativa como:

“Como se relaciona el prestigio de la Universidad de Buenos Aires con los
Premios Nobel obtenidos por sus egresados, y qué ejemplos lo ilustran?”

Esta pregunta ejemplifica el tipo de salida que KRAQ busca producir: una interrogante
natural y teméaticamente alineada con el contenido condensado del resumen comunitario.

Entrenamiento del modelo generador

Para construir el modelo fjy, se utiliza un enfoque de fine-tuning, que consiste en ajustar
un modelo preentrenado para que aprenda a generar preguntas significativas a partir de
resimenes de comunidades. El objetivo es que el modelo pueda transformar de manera
controlada un resumen en una pregunta representativa del contenido.

La construcciéon del dataset de fine-tuning se inspir6 en los pares triples cominmente
disponibles en datasets de pregunta-respuesta, tipicamente de la forma:

(@ A4, E)

donde @ es la pregunta, A la respuesta, y F la evidencia o documento fuente. Sin embargo,
dado que en KRAQ se desea generar preguntas sin depender directamente de una respuesta,
se aplica un procedimiento de transformacién del dataset para crear pares de entrenamiento
de la forma (R, @), donde R es un resumen generado a partir de E'y @, y @ es la pregunta
original.

Este proceso se realiza en dos pasos:

1. Sintesis del resumen (g)
Se utiliza un modelo LLM (e.g., GPT-40) con ejemplos few-shot para sintetizar un
resumen R a partir del contexto y la pregunta:

R=g(Q,FE)
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El modelo recibe como input la evidencia F y la pregunta @), y se le instruye para
generar un texto que resuma los conceptos centrales de la evidencia, sin hacer refe-
rencia explicita a la pregunta. El resultado es un resumen tematico general similar
a los obtenidos de las comunidades, que captura el contenido de la evidencia pero
puede utilizarse de forma auténoma para generar nuevas preguntas.

2. Fine-tuning del generador (f)
Una vez generados los pares (R, (@), se fine-tunea un modelo de lenguaje fp para
predecir @ dado R. El objetivo de entrenamiento es maximizar la verosimilitud lo-
garitmica del conjunto:

E(r,q) [log Pp(Q | R)]

Este procedimiento sigue el esquema clésico de modelado de lenguaje condicional y
permite que el modelo aprenda a inferir las posibles preguntas que emergen natural-
mente de un resumen de comunidad.

Para ver los prompts especificos del entrenamiento ir a Secciéon de Implementacion 3.2.5

La decisiéon de utilizar restimenes R, generados por un LLM, como base para el fine-
tuning de nuestro modelo fy se valida con las conclusiones de Lampinen et al. [38]. Su
investigacion valida que el fine-tuning de modelos se beneficia de la aumentacion del dataset
con informacion inferida o sintetizada por LLMs (similar a nuestros resimenes R), lo que
resulta en un mejor entrenamiento, ademas de lograr asi trabajar sobre un input ajustado
a nuestro objetivo de generaciéon de preguntas.

Entonces, como resultado final de KRAQ, obtenemos un listado de preguntas repre-
sentativas QF = {QX, Qé( ey QkK }, una por cada comunidad detectada en el grafo de
conocimiento (de todos los niveles).

3.2. Experimentacion y resultados de KRAQ

Habiendo detallado la arquitectura metodologica de KRAQ en la secciéon anterior, esta
seccion se dedica a la validacién empirica de su capacidad para generar preguntas repre-
sentativas. Se describirdn los datasets y las decisiones generales de implementaciéon que
sustentan todos los experimentos de esta tesis, para luego enfocarse en el disefio de eva-
luaciéon especifico para KRAQ), los detalles de su implementacion utilizando GraphRAG,
el proceso de fine-tuning del modelo generador de preguntas, y finalmente, se presentaran
y analizaran los resultados obtenidos.

3.2.1. Datasets

La validaciéon empirica de las metodologias propuestas en esta tesis se llevo a cabo
utilizando un conjunto de cuatro benchmarks estandar, ampliamente reconocidos en la
comunidad de investigacién de procesamiento del lenguaje natural. Cada uno de estos
datasets presenta caracteristicas y desafios particulares, lo que permite evaluar el rendi-
miento de los sistemas en diversos escenarios. A continuacion, se describe cada dataset y
sus particularidades.
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TriviaQA

TriviaQA [33] es un dataset de pregunta-respuesta (QA) de dominio abierto donde
las preguntas fueron redactadas por anotadores humanos de forma independiente a los
documentos de evidencia, basandose en trivias preexistentes. Las evidencias provienen de
diversas fuentes web y articulos de Wikipedia.

Estructura de instancia. Cada instancia en TriviaQA se modela como una tripleta
(@, A, E):

= (): Una pregunta en lenguaje natural.

» A: Una respuesta corta y concisa (e.g., una entidad nombrada, una frase nominal).

= F: Un conjunto de documentos o pasajes textuales que contienen la evidencia para
responder a Q).

Ejemplo: TriviaQA

Pregunta (Q): “Who wrote the novel Pride and Prejudice?”

Respuesta (A): “Jane Austen”

Desafios. La principal particularidad de TriviaQA es el grado de desalineacion entre la
pregunta y el contexto evidencial, que puede incluir informacién distractora o redundante.
Las respuestas no siempre se encuentran explicitamente en una tnica frase, lo que exige
una robusta capacidad de recuperacion y sintesis. Su diversidad tematica y la naturalidad
de sus preguntas lo consolidan como un benchmark de referencia para evaluar la robustez
de los sistemas en entornos realistas y potencialmente ruidosos.

HotPotQA

HotPotQA [84] es un dataset diseiado especificamente para evaluar la capacidad de
razonamiento multihop, que implica responder preguntas que requieren la combinacién e
integracién de informacién proveniente de multiples pasajes de texto.

Estructura de instancia. Cada instancia en HotPotQA se presenta como una tripleta
(Q, A E):

= (): Una pregunta escrita por humanos, recolectada a través de tareas de crowdsour-
cing, y diseniada explicitamente para requerir multiples saltos inferenciales.

= A: Una respuesta puntual y concisa, tipicamente un nombre propio, una fecha, o
alguna otra entidad nombrada.

» E: Generalmente contiene dos o méas articulos de Wikipedia (o fragmentos de ellos)
que, en conjunto, incluyen la informacién necesaria para derivar la respuesta A.

Tipos de Razonamiento Multihop. HotPotQA se distingue por la inclusién de dos
tipos principales de preguntas que exigen un razonamiento multihop:
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Ejemplo: Pregunta Puente (Bridge Question)

Este tipo de preguntas requiere que el sistema identifique una entidad o concepto
en un fragmento de evidencia y luego utilice esa informacién como ”puente”’ para
encontrar la respuesta final en otro fragmento.

Pregunta (Q): “What is the birth year of the author of The Selfish Gene?”
Respuesta (A): “1941”
Razonamiento Implicado:

1. Salto 1 (Identificacion): Identificar que el autor de "The Selfish
Gene” es Richard Dawkins.

2. Salto 2 (Bisqueda con Puente): Usar "Richard Dawkins” para bus-
car y encontrar su ano de nacimiento.

- J
Ejemplo: Pregunta Comparativa (Comparative Question)

Estas preguntas requieren la recuperaciéon de atributos para dos o mas entidades, a
menudo de diferentes fragmentos de evidencia, y luego la realizacion de una compa-
raciéon directa para determinar la respuesta.

Pregunta (Q): “Which city has a larger population: Milan or Turin?”
Respuesta (A): “Milan”
Razonamiento Implicado:

1. Recuperacion Entidad 1: Encontrar la poblacién de Milan.

2. Recuperacion Entidad 2: Encontrar la poblaciéon de Turin.

3. Comparacion: Comparar ambos valores y determinar el mayor.
\ J

Desafios. A diferencia de otros conjuntos de datos de QA donde las respuestas suelen en-
contrarse mediante biisquedas superficiales o patrones léxicos directos, HotPotQA presenta
un desafio mas complejo que requiere una lectura estructurada y razonamientos inferencia-
les encadenados. Esta complejidad lo posiciona como un benchmark exigente para evaluar
modelos que combinan la recuperaciéon de informacién con la generaciéon de lenguaje natu-
ral.

BioASQ

BioASQ [74] es un benchmark de referencia para QA en el dominio biomédico, desa-
rrollado en el contexto del BioASQ Challenge y utilizando literatura médica de PubMed.
Estructura de instancia. Cada instancia en BioASQ estd compuesta por una tripleta
(Q. A, E):

» @: Una pregunta formulada por expertos (médicos, bidlogos) sobre temas biomédicos.

= A: Una respuesta de referencia, tipicamente presentada como una lista de entidades

(e.g., genes, medicamentos, procedimientos) o sinénimos que responden directamente
a la pregunta. Por ejemplo, para una pregunta sobre tratamientos, la respuesta podria
ser una lista de fArmacos especificos.
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= F: Un conjunto de abstracts cientificos de PubMed que contienen la evidencia para
responder a Q).

Ejemplo: BioASQ

Pregunta (Q): “;Qué medicamentos se utilizan en el tratamiento de la enfermedad
de Crohn?”

Respuesta de Referencia (A): Una lista como: [infliximab, adalimumab, vedolizu-

mab, ustekinumab, corticosteroides, metotrexato, azatioprinal.
\ J

Desafios. Muchas preguntas en BioASQ requieren la integraciéon de informacion de multi-
ples documentos. El lenguaje técnico y la terminologia especializada del dominio biomédico
representan un desafio considerable para la comprensién y la sintesis semantica. El formato
de las respuestas de referencia, al consistir en listas de entidades o términos, si bien busca
la factualidad, presentaré ciertas complicaciones para la evaluaciéon mediante métricas de
coincidencia exacta, como se detallard y abordara en secciones posteriores al analizar los
resultados especificos para este dataset.

PubHealth

PubHealth [36] es un dataset disefiado para la verificacion automéatica de hechos (fact-
checking) en el dominio de la salud publica, utilizando evidencia de fuentes confiables como
PubMed.

Estructura de instancia. Cada instancia en PubHealth se presenta como una tripleta
(Q, A, E):

» @: Una afirmacion factual (un claim) en lenguaje natural.

= A: Una etiqueta de veracidad: true, false, o mixture.

» F: Fragmentos de texto de fuentes autorizadas que justifican la etiqueta de veracidad.

Ejemplo: PubHealth

Afirmacién (Q): “Beber agua con limén alcaliniza el cuerpo.”

Etiqueta (A): false.

Desafios. PubHealth evalua la capacidad de los modelos para determinar la veracidad
de afirmaciones y justificarla. Requiere la sintesis de evidencia dispersa, especialmente
para la categoria mixture. El lenguaje combina terminologia técnica con discurso piblico,
exigiendo una comprensiéon profunda.

3.2.2. Decisiones generales de implementacién

Antes de detallar los experimentos especificos para KRAQ y sus aplicaciones, es perti-
nente describir las decisiones de implementacién comunes que se adoptaron para la mayoria
de los componentes y procesos evaluados en esta tesis. Estas elecciones, relativas a modelos
de lenguaje, servidores de inferencia, y herramientas de gestion de datos, proporcionan el
contexto técnico para la reproducibilidad y comprension de los resultados experimentales
presentados en este y los capitulos siguientes.



40 3. KRAQ

Modelo de lenguaje utilizado

Para la generacion de texto a través de modelos de LLM, se utiliz6 el modelo LLaMA
3.1-8B-Instruct, desarrollado por Meta Al [71]. Este modelo forma parte de la familia de
LLMs LLaMA (Large Language Model Meta AI), y corresponde a una version optimizada
para tareas de seguimiento de instrucciones (instruct-tuning). Consta de aproximadamen-
te 8 mil millones de pardmetros y ha sido preentrenado sobre un corpus multilingiie de
alta calidad, seguido de un fine-tuning para mejorar la utilidad y seguridad en contextos
conversacionales.

La elecciéon de este modelo responde a una necesidad de equilibrio entre capacidad
expresiva, eficiencia computacional y adaptabilidad a recursos de hardware limitados. Es-
tudios recientes han mostrado que modelos de esta escala, cuando estan debidamente uti-
lizados, pueden alcanzar un rendimiento comparable al de modelos més grandes en tareas
de pregunta-respuesta, razonamiento y generacion de lenguaje controlado [44].

Cuando se tuvo que realizar alguna tarea de fine-tuning, se utilizo a este modelo (LLa-
MA 3.1-8B Instruct) como modelo base.

Servidor de inferencia

Para realizar la inferencia del modelo LLM, se utiliz6 el servidor vLLM [67], una arqui-
tectura disenada especificamente para acelerar la inferencia de modelos de lenguaje a gran
escala. vLLM se basa en un enfoque de paged attention, una técnica que permite reutilizar
eficientemente los key-values en memoria sin necesidad de recomputarlos en cada paso de
generacion. Esto resulta fundamental para tareas de generacién paralela, donde multiples
entradas deben procesarse de forma simultanea, como es el caso de la indexacion de chunks
y resumenes en el pipeline de GraphRAG.

Una de las ventajas clave de vLLM en este proyecto fue su capacidad para manejar
llamadas concurrentes al modelo con minimos costos de latencia, lo que permitié acelerar
significativamente la generacion de restimenes y preguntas en grandes volumenes. Ademas,
al ser compatible con el cliente de OpenAl, resulta idoneo para integrarse con el framework
de GraphRAG, y su interfaz facilita su utilizacién posterior en el desarrollo.

La eleccién de vLLM también respondi6 a la necesidad de optimizar el uso de memoria
VRAM en una GPU limitada (RTX 3090 de 24 GB), maximizando el throughput.

Como servidor de Inferencia para el modelo de embeddings, se utilizo Ollama.

Cuantizacion del modelo

Para asegurar la viabilidad de ejecutar el modelo LLaMA 3.1-8B Instruct en una GPU
con 24 GB de VRAM (RTX 3090) en el framework de vLLM, se recurri6 a un modelo
previamente cuantizado mediante la técnica AWQ (Activation-aware Weight Quantization)
a 4 bits, descargado desde de Hugging Face (hugging-quants/Meta-Llama-3.1-8B-Instruct-
AWQ-INT4). Esta técnica permite reducir significativamente el tamano del modelo y su
requerimiento de memoria sin afectar de forma sustancial la calidad de las respuestas
generadas.

AWQ se basa en una estrategia de cuantizaciéon post-entrenamiento que preserva las
activaciones mas relevantes del modelo al momento de decidir los rangos de cuantizacion,
lo que mejora la estabilidad y el rendimiento frente a métodos de cuantizacién més simples
como la cuantizacion uniforme a int8 [43|. Al centrarse en preservar la distribucion de
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activaciones criticas, AWQ logra mantener la fidelidad del modelo incluso bajo formatos
de 4 bits, permitiendo un uso més eficiente de la memoria y mayor throughput de inferencia.
Una de las ventajas clave de esta eleccién fue su compatibilidad nativa con el servi-
dor vLLM, que ofrece soporte completo para modelos AWQ. Esto evit6 la necesidad de
conversiones adicionales o ajustes manuales en el pipeline de inferencia, facilitando una
integracion fluida y eficiente del modelo cuantizado en todo el sistema de generacion.

Generador de embeddings

Para la representacion vectorial de los textos en el pipeline de GraphRAG, tanto en
la etapa de indexacién como en la comparacion semantica de preguntas y recuperacion de
documentos, se utilizo el modelo nomic-embed-text, desarrollado por Nomic Al [26]. Este
modelo fue seleccionado por su excelente rendimiento en tareas de recuperacion semantica,
evaluado en benchmarks estdandar como MTEB (Massive Text Embedding Benchmark) [51],
donde se posiciona como uno de los mejores modelos open-source de generaciéon de embed-
dings para textos en inglés.

El modelo nomic-embed-text fue entrenado especificamente para capturar similitudes
semanticas a nivel de documento y frase, lo que lo hace especialmente adecuado para tareas
de retrieval. Su arquitectura se basa en una variante optimizada del encoder BERT-like
con pooling por token [CLS], y es capaz de proyectar entradas de texto de longitud variable
en un espacio vectorial denso y consistente, de manera eficiente y estable.

Base de datos vectorial

Para el almacenamiento y la recuperacion eficiente de embeddings generados durante
el pipeline de KRAQ, se utilizdé Qdrant, un motor de busqueda vectorial optimizado pa-
ra consultas por similitud seméntica. Qdrant permite realizar busquedas aproximadas en
espacios vectoriales de alta dimension mediante algoritmos eficientes como HNSW (Hierar-
chical Navigable Small World), y soporta operaciones complejas como filtrado condicional
y metadatos adjuntos a los vectores [28|. Esto lo convierte en una herramienta ideal pa-
ra sistemas RAG donde se requiere recuperar documentos relevantes a partir de queries
embebidas.

En el contexto de esta tesis, se desplegd una instancia local de Qdrant para garantizar
control total sobre la persistencia de los vectores, optimizar el rendimiento en entornos con
recursos limitados, y evitar dependencias externas. La base de datos almacend tanto los
embeddings de los chunks documentales como los embeddings de las preguntas generadas,
permitiendo realizar comparaciones semanticas durante la evaluacion.

Tamanos de datasets

Para la realizacion de los experimentos descritos en esta tesis, se procedié a un ajuste
en el tamano de los datasets empleados. Especificamente, los corpus originales fueron sub-
muestreados de manera que, tras el proceso de fragmentacion (chunking) implementado
en el pipeline de GraphRAG, se obtuviera un volumen de aproximadamente 15,000 chunks
por dataset. Cada uno de estos chunks fue configurado para tener una longitud maxima
de 300 tokens.

Esta reduccién controlada del tamano de los datos fue una consideracién pragmaética,
impuesta por las limitaciones temporales y los recursos computacionales disponibles en el
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marco de esta tesis de licenciatura. El objetivo principal de este ajuste fue asegurar la
viabilidad de ejecutar la totalidad de los experimentos y las correspondientes evaluaciones
en un plazo razonable, permitiendo asi una exploracién exhaustiva de las metodologias
propuestas.

Por lo tanto, el tamano final del conjunto de preguntas seleccionadas para cada dataset
se defini6 de modo que la totalidad de los documentos de evidencia asociados sumaran
aproximadamente 5.000.000 de tokens por corpus. El niimero de preguntas de referencia
utilizadas para esta evaluaciéon de KRAQ fue:

= TriviaQA: 300 preguntas de referencia.

= HotPotQA: 2000 preguntas de referencia.

= BioASQ: 1000 preguntas de referencia.

» PubHealth: 2400 preguntas de referencia (afirmaciones).

El ntmero de preguntas utilizadas para la evaluacion de los sistemas RAG (Combined
Retrieve RAG y Efficient Speculative RAG) varia y se especificara en las secciones corres-
pondientes a cada uno, reflejando también las limitaciones temporales para la ejecuciéon de
dichos experimentos.

3.2.3. Diseno de evaluacion para KRAQ

La evaluacién de la calidad de las preguntas generadas por KRAQ se centra en su
capacidad para representar seméanticamente las posibles consultas que un usuario podria
formular sobre un corpus. Para cuantificar esto, se adoptdé un enfoque basado en métri-
cas de similitud seméntica, ya que las métricas tradicionales basadas en N-gramas (como
BLEU o ROUGE) presentan limitaciones importantes en el contexto de QG. Estas tltimas
penalizan formulaciones sintéctica o léxicamente diferentes pero semanticamente correctas
y relevantes, lo que a menudo resulta en una baja correlacién con la evaluaciéon humana
en tareas donde la creatividad y la variacion son deseables [25].

En esta tesis, optamos por BERTScore |88, una métrica que utiliza embeddings con-
textuales para calcular la similitud seméantica entre la pregunta generada y una de referen-
cia, superando las limitaciones de la simple coincidencia léxica. Especificamente, se utiliza
el F1 de BERTScore, que combina precision y recall. Este enfoque permite cuantificar la
relevancia y la cobertura semantica de las preguntas de KRAQ en relacién con un conjunto
de preguntas de referencia existentes en datasets estandar, sin exigir una correspondencia
léxica exacta.

Es crucial destacar una distinciéon metodolégica fundamental de KRAQ respecto a mu-
chos trabajos previos en QG. Un numero considerable de sistemas de QG evaluados con
métricas tradicionales operan bajo un paradigma answer-aware, incorporando la respues-
ta objetivo A como entrada para generar la pregunta @ (Ecuacion 2.3). En contraste,
KRAQ adopta un paradigma answer-unaware, operando tiinicamente a partir del corpus X
sin requerir respuestas predefinidas. Esta eleccién deliberada responde a la necesidad de
aplicabilidad en escenarios realistas donde no siempre se dispone de pares (pregunta, res-
puesta) exhaustivos. Por ello, métricas que presuponen un modelo answer-aware son menos
pertinentes para evaluar la contribucion central de KRAQ. Nuestro enfoque de evaluacion,
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centrado en la cobertura seméntica de preguntas relevantes (sin asumir que KRAQ conozca
sus respuestas) y en el impacto funcional en tareas downstream, favorece la valoracion de
la flexibilidad y utilidad practica del sistema.

Adicionalmente, dado que el propoésito fundamental del conjunto de preguntas generado
por KRAQ es optimizar los sistemas RAG, los resultados de los experimentos de aplica-
cion (Combined Retrieve RAG y Efficient Speculative RAG, descritos en las Secciones 4.2
y 5.2.7) funcionan como una meétrica indirecta de la utilidad de KRAQ. Una generacion
de preguntas efectiva por parte de KRAQ deberia traducirse en mejoras observables en la
precision o eficiencia de dichos sistemas RAG (como se analiza en la Seccion 5.2.9).

Para llevar a cabo esta evaluacion, se utilizaron los datasets estandar previamente
descritos (Seccion 3.2.1), donde cada instancia provee una tripleta (@, A, E). En esta es-
tructura, @ es un conjunto de preguntas de referencia formuladas por humanos, A sus
correspondientes respuestas correctas, y F la coleccién de documentos o evidencia textual
que conforma el corpus del dataset y sobre la cual opera KRAQ. El protocolo de evaluacién
de KRAQ), diseniado para medir su capacidad de cubrir seménticamente estas preguntas
@, se desarrolla de la siguiente manera:

1. Inicialmente, el pipeline completo de KRAQ procesa el corpus de evidencia E para ge-
nerar un conjunto de preguntas representativas, denotado como oK = {Q?, g, ey QE}
Cada pregunta Qf € OK es generada a partir de una comunidad seméantica distinta,
detectada previamente en el grafo de conocimiento construido sobre F.

2. Posteriormente, se establece una correspondencia entre las preguntas generadas QX y
el conjunto de preguntas de referencia del dataset, @ = {Q1,Q2,...,Qn}. Para cada
pregunta de referencia (); € Q, se identifica su contraparte generada mas similar,
Q;k» € OX mediante la maximizacion de la similitud coseno entre sus respectivas
representaciones vectoriales (embeddings). Formalmente:

Q; = arg max (cos(emb(Q;), emb(Q;))) (3.1)
Q.eQK
donde emb(-) es la funcion que proyecta una pregunta a su embedding, y cos(-) es la
funcion que calcula la similitud coseno entre dos embeddings.

A partir de estos pares (Q;, Q;‘), se procede a evaluar la calidad de la generacion utilizando
dos métricas complementarias, ambas fundamentadas en BERTScore.

Meétrica 1: Cobertura semantica mediante BERTScore

La primera métrica tiene como objetivo evaluar la fidelidad con la que el contenido
semantico de una pregunta de referencia ); se encuentra reflejado en su correspondien-
te pregunta generada mas similar (7. Para cada par (Qj, Q;‘), se calcula el BERTScore
(especificamente, la puntuacion F1 de BERTScore, que combina precision y recall):

BERTScore(Q;, Q;)

El resultado final de esta métrica se obtiene promediando las puntuaciones de BERTScore
sobre todas las N preguntas de referencia del dataset.
N

1 *
Relevance = i Z; BERTScore(Qj, Q7)
=
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Esta métrica proporciona una medida de la cercania semantica global, siendo robusta a
variaciones léxicas o estructurales entre las preguntas comparadas.

Meétrica 2: Umbral de relevancia semantica (Relevance@r)

La segunda métrica propuesta es de naturaleza binaria y busca estimar la utilidad
préactica de las preguntas generadas por KRAQ. Se considera que una pregunta generada
@} es relevante como sustituto o representante de (); si el BERTScore entre ellas supera
un umbral predefinido 7 (e.g., 7 = 0,75). Esta métrica permite cuantificar la proporcion de
preguntas generadas por KRAQ que alcanzan un grado aceptable de alineaciéon semantica
con las preguntas de referencia.

La métrica se define como la proporcion de pares (Q;, Q;‘) que satisfacen esta condicion:

N
1 N
Relevance@Qr = N E 1 I [BERTSCOTG(Qja Q])) > T]
]:

donde N es el ntimero total de preguntas de referencia en Q, I[-] es la funcion indicadora
(que toma valor 1 si la condicion entre corchetes es verdadera, y 0 en caso contrario).

La aplicacion conjunta de estas dos métricas permite una evaluacién eficiente, determi-
nando si las preguntas generadas por KRAQ logran una cobertura seméantica completa y
un grado de relevancia suficiente respecto a las preguntas relevantes que pueden formularse
sobre el corpus analizado.

Baseline

Para contextualizar el rendimiento de KRAQ, se implementé un baseline que simula
una estrategia de generaciéon de preguntas mas directa, sin el analisis estructural profundo
ni el conocimiento global del corpus que caracteriza a KRAQ. Este enfoque genera pre-
guntas a partir de un ntmero variable de chunks seleccionados aleatoriamente del corpus,
combinados para formar un contexto a partir del cual un modelo de lenguaje formula una
pregunta.

El procedimiento es el siguiente:

1. Se elige un ntimero entero aleatorio m dentro de un rango predefinido [mq, ms]. Este
valor m determinara cuéntos chunks se utilizardn para generar la pregunta actual.

2. Se seleccionan m chunks Cfi), ey C’,g,? de manera uniforme y aleatoria del corpus F.

3. Estos m chunks se concatenan para formar un tnico contexto Ci(nz)ut.

4. Se utiliza este contexto O para que un modelo de lenguaje genere una pregunta

input
Q-

5. El proceso se repite K veces (donde K es el numero de preguntas generadas por
KRAQ en el mismo corpus) para construir el conjunto de preguntas del baseline,

denotado como QP = {Q'f, ng), ceey Q?{}
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Algorithm 3 Baseline: Generacion de preguntas a partir de un nimero variable de frag-
mentos aleatorios
Require: Corpus F, rango de nimero de chunks [my, ms|, nimero de preguntas K, modelo
LLM LLM
Ensure: Conjunto de preguntas generadas QP
1: Qb — @
2: for i =1to K do
3: m < RandomlInt(mq, mg)

E® « SampleRandomChunks(E, m)
V) + Concatenate( E())

input

4
5
6: Q? < LLM(promptq, c®W
7
8

input)
Q"+ Q" U{Qy}

. return QP

Ver el prompt para generar las preguntas promptqg en Apéndice 7.3. En la implemen-
tacion realizada para esta tesis, se utilizaron los valores m; = 3 y mo = 7 para definir el
rango del nimero de chunks aleatorios a concatenar.

Este baseline, al operar sobre muestras aleatorias locales de tamano variable, puede
generar preguntas coherentes pero frecuentemente redundantes, sin una estrategia para
cubrir adecuadamente las distintas areas teméticas del corpus de manera sistematica.

Comparar KRAQ con este baseline permite aislar el valor agregado por el anélisis
estructurado inherente a KRAQ), que incluye la construcciéon del grafo de conocimiento, la
deteccion de comunidades semanticas y la generaciéon de restimenes representativos antes
de la formulacién de preguntas.

Cabe destacar que muchas lineas base alternativas de tipo Graph-to-Text no son com-
parables directamente, ya que tipicamente generan texto a partir de tripletas o subgrafos
condicionados explicitamente por una respuesta conocida. En nuestro caso, el objetivo
es formular preguntas abiertas sin informacién de respuesta, por lo que esos métodos no
resultan adecuados como punto de comparacion directa (Ver Seccion 2.3).

3.2.4. Configuraciéon de GraphRAG

Para la construccion del grafo de conocimiento, la ejecucion del clustering seméantico y
la posterior generacion de resimenes por comunidad, se empleé el framework GraphRAG,
desarrollado por Microsoft [19]. GraphRAG hizo su framework OpenSource lo que facilita
y permite su utilizacion [49].

La eleccion de GraphRAG se fundamenta en su capacidad para ejecutar estos procesos
de manera controlada y sistematica. La utilizaciéon de este framework establecido contribuye
a la replicabilidad y al rigor cientifico del método KRAQ propuesto, al tiempo que se
aprovechan las validaciones y el consenso existentes en la comunidad cientifica en torno
a GraphRAG. Para los propositos de esta tesis, el framework fue adaptado con el fin de
optimizar tanto el rendimiento computacional como la compatibilidad con los recursos de
hardware disponibles.

La totalidad de los experimentos descritos en este trabajo se llevaron a cabo utilizando
una unica unidad de procesamiento grafico (GPU) NVIDIA GeForce RTX 3090, equipada
con 24 GB de VRAM.
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Parametros elegidos

Con el objetivo de adaptar la ejecucion de GraphRAG a los datasets y recursos men-
cionados, se realizaron ajustes especificos sobre los parametros base del framework. A
continuacion, se detallan las configuraciones més relevantes modificadas.

Configuraciéon de (chunks): La fragmentacion del corpus de entrada se configur6 con
los siguientes parametros:

» size: 300 (tokens por chunk).
» overlap: 50 (ftokens de solapamiento entre chunks consecutivos).

Configuraciéon del modelo del lenguaje en GraphRAG: Para las tareas de extrac-
cion y resumen dentro de GraphRAG, se especifico el siguiente modelo y parametros de
inferencia:

» model: hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4 (refiriéndose al mo-
delo LLaMA 3.1 8B Instruct cuantizado con AWQ), previamente discutido en la Sec-
cion 3.2.2).

» concurrent_requests: 15 (namero de solicitudes paralelas permitidas al servidor del
modelo, ajustado para maximizar el throughput (tokens generados por segundo) en

la GPU disponible).

Obtenciéon de resimenes comunitarios desde GraphRAG

Una vez ejecutado el pipeline de GraphRAG sobre un corpus, el framework genera
diversos archivos que contienen el conocimiento estructurado extraido y los anélisis reali-
zados sobre el grafo. Para los propdésitos de esta tesis, el archivo de principal interés que se
utiliza en etapas posteriores es el archivo denominado community_reports.parquet que
se encuentra en la carpeta output al correr el CLI de GraphRAG.

Este archivo, almacenado en formato Apache Parquet para un manejo eficiente de
datos tabulares, contiene una representacion detallada de todas las comunidades semanticas
identificadas por GraphRAG. Para cada comunidad detectada en los diferentes niveles
jerarquicos del grafo, el archivo community_reports.parquet incluye tanto el resumen
textual como una lista de observaciones llamadas findings que destacan hechos o puntos
claves dentro de la informacion contenida en la comunidad.

Si bien en la presente tesis el sistema KRAQ se enfoca en utilizar los resimenes textuales
comunitarios como base para la generacion de preguntas (ver Seccion 3.1.5), la existencia
de estos findings detallados por comunidad abre una via interesante para trabajos futuros.
Se podria explorar:

» Utilizar directamente los findings (o una seleccion de ellos) como una forma alter-
nativa o complementaria de resumen para la generacion de preguntas, lo que podria
llevar a preguntas méas granulares o especificas.

= Emplear los findings para enriquecer el prompt enviado al modelo generador de pre-
guntas, proporcionando asi un contexto adicional més alla del resumen narrativo,
con el objetivo de mejorar la calidad o diversidad de las preguntas generadas.

No obstante, para el alcance actual, el resumen comunitario principal es el objeto funda-
mental que se extrae de GraphRAG para el pipeline de KRAQ.
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Optimizacién de prompts en graphRAG

El framework GraphRAG ofrece la capacidad de adaptar sus prompts para dominios
especificos, con el fin de mejorar su alineacién con las caracteristicas particulares de un cor-
pus. Esta optimizacion puede realizarse mediante una funcionalidad integrada que ajusta
los prompts de manera automéatica llamada PromptTuning. Para evaluar el impacto de
esta funcionalidad en el contexto de la presente tesis, se compararon las dos modalidades
de configuracion de prompts:

Modalidad sin Ajuste de Prompts (NoPromptTuning): En esta configuracion, se emplea-
ron los prompts predeterminados que provee GraphRAG. Estos prompits estan dise-
nados para funcionar bien en una amplia variedad de un ajuste adicional especifico
al dominio.

Modalidad con Ajuste de Prompts (PromptTuning): Esta modalidad explora la capacidad
de GraphRAG para optimizar sus prompts internos. En particular, el sistema parte
del muestreo de un subconjunto de chunks. Luego, se analiza el contenido mediante
un LLM para identificar los tipos de entidades y demas caracteristicas del corpus, lo
cual permite adaptar los prompts de manera automatica. [19].

Para determinar la configuracion més adecuada para los experimentos siguientes de esta
tesis, se realizoé un estudio comparativo entre estas dos modalidades utilizando el dataset
BioASQ. Se usaron las metricas explicadas para KRAQ (ver Seccion 3.2.3). Los resultados
obtenidos se presentan en la Tabla 3.1.

Tab. 3.1: Comparacion de metricas sobre KRAQ con y sin ajuste de prompts (PromptTuning) en
GraphRAG sobre el dataset BioASQ.
Meétrica de Relevancia NoPromptTuning PromptTuning

Relevance 79.0 78.8
Relevance@0.70 93.1 92.9
Relevance@Q.75 73.8 74.8
Relevance@0.80 42.6 40.6

A partir de los resultados presentados en la Tabla 3.1, se observa que la modalidad
sin ajuste de prompts (NoPromptTuning) ofrece un rendimiento ligeramente superior o
comparable en la mayoria de las métricas de relevancia evaluadas. Aunque la modalidad
con ajuste (PromptTuning) muestra una leve ventaja en el umbral de Relevance@0.75,
las diferencias generales no son significativas y, en los demas casos, el no ajuste resulta
marginalmente mejor.

Considerando estos hallazgos y la complejidad adicional que implica el proceso de
PromptTuning, se concluyo que, para los fines de esta tesis, la utilizacion de los prompts
predeterminados ofrecia un balance mas favorable entre rendimiento y simplicidad me-
todologica. Por consiguiente, para el resto de los experimentos detallados que involucran
GraphRAG, se opto6 por la modalidad sin ajuste de prompts (NoPromptTuning).

Los prompt predeterminados de GraphRag pueden encontrarse en el Apendice E de
[19]
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3.2.5. Modelo generador de preguntas

Tras la identificaciéon de comunidades seméanticas y la generaciéon de restimenes para
cada una de ellas mediante el pipeline de GraphRAG (como se detalld en la Seccion 3.2.4), la
siguiente etapa del sistema KRAQ consiste en transformar estos resiimenes en un conjunto
de preguntas representativas. El objetivo de esta fase es derivar, a partir de cada resumen
comunitario, una pregunta que capture la esencia del mismo y que pueda actuar como
proxy de las posibles intenciones de busqueda de un usuario interesado en el corpus.

Este proceso de generaciéon de preguntas se fundamenta en la utilizacién de un LLM
especificamente fine-tuneado. Dicho modelo esté entrenado para realizar un mapeo desde
un resumen textual de entrada (proveniente de una comunidad seméntica) hacia una pre-
gunta significativa y contextualmente relevante. La pregunta generada busca encapsular la
interrogante més probable o pertinente que un individuo formularia con respecto a la infor-
macién contenida en ese resumen especifico. En las subsecciones siguientes, se describiré el
proceso de fine-tuning de este modelo generador y se analizaran los resultados obtenidos.

Fine-tuning del modelo

Como se introdujo en la Seccion 3.1.5, la generacién de preguntas representativas a
partir de los resiimenes comunitarios se basa en un modelo de lenguaje fy especificamente
entrenado para esta tarea. Este proceso de fine-tuning, tiene como objetivo entrenar un
modelo LLM para que, dado un resumen R , pueda generar una pregunta Q¥ que sea
semantica y contextualmente relevante para dicho resumen.

Dataset y metodologia de entrenamiento. La generacién de los pares de entrena-
miento (R, Q) para el ajuste fino del modelo fy se fundament6 en la utilizacion de dos
datasets externos, reconocidos en el ambito de QA: Dolly-v2 y MusiQue. La seleccion de
estos datasets especificos respondi6 a la necesidad de emplear corpus distintos a aquellos
que se utilizarfan posteriormente para la evaluacion final del sistema KRAQ), evitando asi
cualquier posible sesgo o sobreajuste a los datos de prueba.

El dataset Dolly-v2 [13| esta compuesto por aproximadamente 15,000 ejemplos de se-
guimiento de instrucciones generados por humanos, resulta idéneo por su diversidad y
calidad. Por su parte, MusiQue 73] es un dataset disenado para evaluar el razonamiento
multi-salto en tareas de QA, proporcionando preguntas complejas que requieren la inte-
gracion de informacion de multiples fuentes. De ambos datasets, se extrajeron las tripletas
(Q, A, E) (pregunta de referencia, respuesta, evidencia) que sirvieron como base para la
sintesis de los resimenes R y la conformacion de los pares (R, Q) para el entrenamiento de
nuestro modelo generador de preguntas.

1. Sintesis de restmenes (g): Para cada instancia (@, E) de los datasets, se utiliz6 un
modelo LLM (GPT-40) en un esquema few-shot para generar un resumen tematico
R = g(Q, E). Se instruy6 al modelo para que resumiera los conceptos centrales de la
evidencia FE sin hacer referencia explicita a (), produciendo asf{ un resumen general del
contenido de una supuesta comunidad semantica relacionada. El prompt especifico
utilizado para esta sintesis de resiimenes se detalla en el Apéndice 7.1.

2. Fine-tuning del generador (fy): Con los pares (R, Q) generados, se procedi6 al fi-
netuning del modelo LLaMA 3.1-8B-Instruct. El objetivo fue maximizar la verosimili-
tud logaritmica de predecir la pregunta original ) dado el resumen R, E(g ) [log Pyp(Q | R)].
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Este enfoque permite al modelo aprender a inferir las preguntas mas probables y
significativas que podrian surgir naturalmente de un resumen temaético, como los ge-
nerados para las comunidades. El prompt disenado para el proceso de fine-tuning se
detalla en el Apéndice 7.2. Cabe destacar que esta misma estructura de prompt se
mantuvo para la generacion de preguntas durante la fase de inferencia de KRAQ.

Configuracion y parametros del entrenamiento. El proceso de fine-tuning se llevo a
cabo utilizando la técnica QLoRA (Quantized Low-Rank Adaptation) para una adaptacion
eficiente en memoria del modelo LLaMA 3.1-8B Instruct. A continuacién, se resumen los
hiperparametros y configuraciones clave empleadas.

= Modelo base: meta-1lama/Llama-3.1-8B-Instruct.

» Cuantizacion (BitsAndBytes): Carga en 4-bit (load_in_4bit=True), tipo de
computo torch.float16, doble cuantizaciéon (bnb_4bit_use_double_quant=True),
tipo de cuantizacién nf4.

» Configuraciéon PEFT (LoRA): Rango (r=64), alfa LoRA (lora_alpha=16), dro-
pout LoRA (lora_dropout=0.05), bias=""none’’, tipo de tarea CAUSAL_LM.

» Dataset: Particion 90 % entrenamiento / 10 % evaluacion.

» Argumentos de entrenamiento (Principales):

Lote por dispositivo (entrenamiento y evaluacion): 2.
Pasos de acumulacion de gradiente: 4.

Epocas de entrenamiento: 3.

Tasa de aprendizaje: 2 x 1074,

Precisiéon mixta: bf16=True.

Optimizador: paged_adamw_8bit.

Longitud maxima de secuencia: 2048 tokens.

El entrenamiento se realiz6 sobre una GPU NVIDIA GeForce RTX 3090 con 24 GB de
VRAM.

Resultados del entrenamiento. El proceso de finetuning del modelo generador de pre-
guntas mostré una convergencia estable. La Figura 3.6 ilustra la curva de pérdida (loss)
durante el entrenamiento sobre el conjunto de validacién. Se observa una rapida disminu-
cién inicial de la pérdida, seguida de una estabilizacién alrededor de un valor de 0.65-0.70,
lo que indica que el modelo aprendié efectivamente a mapear los restimenes a las preguntas
correspondientes. La tendencia suavizada (ventana de 50 pasos) confirma esta estabiliza-
cion.
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Pérdida durante el entrenamiento
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Fig. 3.6: Curva de pérdida en el conjunto de validacién durante el proceso de finetuning del modelo
generador de preguntas de KRAQ. La linea azul muestra la pérdida por paso y la linea
roja una tendencia suavizada con una ventana de 50 pasos.

Como resultado final del pipeline completo de KRAQ), se obtiene un listado de preguntas
representativas {QF, QX ... ,fo }, una por cada comunidad seméantica detectada en el
grafo de conocimiento (considerando todos los niveles jerarquicos de comunidades).

3.2.6. Complejidad Computacional de KRAQ

La complejidad computacional del pipeline completo de KRAQ estd dominada en gran
medida por las etapas iniciales gestionadas por el framework GraphRAG, especificamente
la extraccién de entidades y relaciones, la construccién del grafo de conocimiento y la
deteccion jerarquica de comunidades. Estas operaciones, si bien intensivas, se realizan una
tnica vez por corpus durante una fase de preprocesamiento.

Una vez que se han identificado las comunidades seménticas y se han generado sus
respectivos resimenes textuales (como se describe en la Seccion 3.2.4), la etapa final de
KRAQ), que es la generacion de una pregunta representativa por cada resumen comunita-
rio, presenta una complejidad que es lineal con respecto al niimero total de comunidades
detectadas en todos los niveles jerarquicos. Es decir, por cada resumen de comunidad R;
obtenido de GraphRAG, se realiza una tnica inferencia con el modelo de lenguaje fy (ajus-
tado como se detalla en la Seccion 3.2.5) para producir la pregunta Ql-K . Si N, es el ntmero
total de comunidades identificadas, la generaciéon de preguntas requerira N, inferencias del
LLM.

El niimero de comunidades y, por lo tanto, el nimero de preguntas generadas, depende
de la estructura inherente del corpus, su tamano, la diversidad temética y los parametros
del algoritmo de deteccion de comunidades (e.g., el algoritmo Leiden). Para los datasets
utilizados en esta tesis, cada uno compuesto por aproximadamente 5 millones de tokens
(resultando en unos 15,000 chunks de 300 tokens, como se describe en la Seccion 3.2.2), se
observo la siguiente cantidad de preguntas generadas (equivalente al nimero de comuni-
dades detectadas en todos los niveles):

= TriviaQA: 17,378 preguntas.
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= PubHealth: 10,412 preguntas.
= HotPotQA: 25,660 preguntas.
= BioASQ: 19,100 preguntas.

A modo ilustrativo, la distribuciéon de las preguntas generadas por KRAQ para el
dataset HotPotQA a través de los diferentes niveles jerarquicos de comunidades se presenta
en la Tabla 3.2. Los niveles méas bajos (e.g., Nivel 0, Nivel 1) representan comunidades mas
amplias y generales, mientras que los niveles superiores (e.g., Nivel 3, Nivel 4) corresponden
a comunidades més pequenas, especificas y granulares.

Tab. 3.2: Distribucién de preguntas generadas por KRAQ (y, por ende, comunidades detectadas)
por nivel jerarquico para el dataset HotPotQA.
Nivel Jerarquico Numero de Preguntas/Comunidades

0 111

1 2,392

2 11,468

3 10,717

4 961

5 11
Total 25,660

La capacidad de KRAQ para generar un conjunto tan extenso y jerarquizado de pre-
guntas representativas es una de sus caracteristicas distintivas. Este conjunto no solo busca
una cobertura semantica amplia, sino que también ofrece preguntas a diferentes niveles de
granularidad temética, lo que podria ser explotado en futuras aplicaciones avanzadas de
RAG que requieran un entendimiento contextual a miltiples escalas.

3.2.7. Resultados de KRAQ

Tras haber detallado el protocolo experimental para la evaluacion de KRAQ (Sec-
cion 3.2.3) y el proceso completo de generacion de sus preguntas representativas, desde
la construccion del grafo de conocimiento (Seccion 3.2.4) hasta el finetuning del modelo
generador (Seccion 3.2.5), esta seccion se enfoca en presentar los hallazgos empiricos.

El rendimiento de KRAQ se evaluara comparandolo con dos alternativas:

= KRAQ-Instruct: Para aislar el impacto del fine-tuning especifico realizado en
KRAQ), se considera esta variante. KRAQ-Instruct sigue el mismo pipeline de Graph-
RAG para obtener los resimenes comunitarios, pero, para la generacién de preguntas
a partir de estos, utiliza el modelo LLaMA 3.1-8B Instruct (sin el fine-tuning de la
Seccion 3.2.5).

» Baseline Aleatorio (Random): Este enfoque, ya descrito en la Seccion 3.2.3,
genera preguntas a partir de chunks de texto seleccionados aleatoriamente, sirviendo
como punto de referencia para métodos sin andlisis estructural profundo.

A continuacién, se presentan los resultados cuantitativos de estas tres aproximaciones,
utilizando las métricas de Relevance y Relevance@r (con 7 € {0,70,0,75,0,80}) definidas
en el diseno de evaluacion.
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Resultados

Los resultados obtenidos para cada dataset y cada variante del sistema se presentan en
la Tabla 3.3. Los valores indican el porcentaje de preguntas generadas que cumplen con
los criterios de cada métrica.

Tab. 3.3: Comparacion del rendimiento de KRAQ (con modelo fine-tuned), KRAQ-Instruct (mo-
delo preentrenado) y el Baseline Aleatorio en la generacion de preguntas representativas.
Las métricas son Relevancia promedio (BERTScore F1) y Relevance@r para diferentes

umbrales 7.
Dataset Meétrica KRAQ (Fine-tuned) KRAQ-Instruct Baseline Aleatorio
TriviaQA
Relevance 78.1 75.5 72.2
Relevance@0.70 93.0 90.6 72.0
Relevance@0.75 71.0 50.3 22.3
Relevance@0.80 33.0 15.0 3.6
HotPotQA
Relevance 74.2 72.8 69.5
Relevance@0.70 84.0 75.0 42.7
Relevance@0.75 40.4 29.9 5.6
Relevance@0.80 10.0 4.7 0.3
PubHealth
Relevance 68.5 68.0 66.7
Relevance@0.70 33.6 30.3 15.6
Relevance@0.75 4.8 3.4 1.1
Relevance@0.80 0.4 0.26 0.03
BioASQ
Relevance 79.0 77.9 74.1
Relevance@0.70 93.1 93.6 84.3
Relevance@0.75 73.8 70.8 42.7
Relevance@0.80 42.6 34.9 8.6

Analisis de los resultados

La Tabla 3.3 evidencia consistentemente la superioridad del enfoque KRAQ), particu-
larmente en su version con el modelo generador de preguntas fine-tuneado, en comparaciéon
tanto con el uso del modelo instruct sobre los mismos restmenes comunitarios (KRAQ-
Instruct) como con el baseline de generacion a partir de chunks aleatorios.

Impacto del ajuste fino (Fine-tuning): En la mayoria de los datasets y métricas,
KRAQ con el modelo fine-tuned supera a KRAQ-Instruct. Por ejemplo, en TriviaQA, la
Relevance aumenta de 75.5 % a 78.1 %, y la proporcion de preguntas que superan un umbral
de relevancia de 0.75 (Relevance@0.75) pasa de un 50.3 % a un notable 71.0 %. Similarmen-
te, en HotPotQA, el incremento en Relevance@0.75 es de 29.9 % a 40.4 %. Estos resultados
sugieren que el proceso de fine-tuning, al entrenar el modelo especificamente para mapear
resimenes comunitarios a preguntas relevantes, logra capturar de manera mas efectiva la
intencién seméantica subyacente en comparaciéon con un modelo generalista. La tnica ex-
cepcién notable se observa en BioASQ para Relevance@0.70, donde KRAQ-Instruct obtie-
ne un rendimiento ligeramente superior (93.6 % vs 93.1 %), aunque las diferencias en otros
umbrales y en la relevancia promedio para BioASQ siguen favoreciendo al modelo ajustado.
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Superioridad sobre el baseline aleatorio: Ambas variantes de KRAQ demuestran una
mejora sustancial sobre el baseline que genera preguntas a partir de chunks aleatorios.
Este tltimo, si bien puede producir preguntas localmente coherentes, falla en capturar la
estructura tematica global del corpus. Esto es particularmente evidente en las métricas
de Relevance@r con umbrales més altos. Por ejemplo, en TriviaQA para Relevance@0.75,
KRAQ (fine-tuned) alcanza un 71.0 % mientras que el baseline aleatorio solo llega al 22.3 %.
En HotPotQA, la diferencia es atin mas pronunciada: 40.4 % para KRAQ frente a un escaso
5.6 % para el baseline. Esto subraya el valor de la estructuracién del conocimiento mediante
grafos y la generacion de resimenes comunitarios que realiza KRAQ antes de la etapa de
generacion de preguntas, asegurando una cobertura semantica mas amplia y representativa.

Rendimiento en PubHealth: Es interesante notar que, si bien KRAQ sigue superando
a los otros métodos en PubHealth, las mejoras y los valores absolutos de las métricas son
consistentemente mas bajos en comparaciéon con los otros datasets. Por ejemplo, Relevan-
ce@0.75 para KRAQ (fine-tuned) es solo del 4.8 %. Esto puede atribuirse a la naturaleza
particular de las "preguntas”’ de referencia en PubHealth, que originalmente son afirma-
ciones o claims que requieren verificacién. La tarea de generar una pregunta a partir de
un resumen tematico podria no alinearse tan directamente con la formulacién de un claim
factual como lo hace con las preguntas més abiertas o de busqueda de informacion de
TriviaQA o HotPotQA. No obstante, incluso en este escenario més desafiante, la estructu-
racion de KRAQ sigue ofreciendo un rendimiento superior al baseline.

Conclusiones del analisis: Los resultados validan empiricamente la efectividad de la
arquitectura KRAQ para generar preguntas representativas que cubren seméanticamente
el contenido de un corpus. El proceso de fine-tuning del modelo generador de preguntas
demuestra ser beneficioso, mejorando la calidad de las preguntas generadas a partir de los
resumenes comunitarios. La comparacién con el baseline aleatorio resalta la importancia
fundamental del analisis estructural y la sintesis tematica que KRAQ introduce antes de
la generacién final de preguntas.



4. COMBINED RETRIEVE RAG

Este capitulo introduce y evalta la primera aplicacién préctica de las preguntas re-
presentativas generadas por KRAQ (descrito en el Capitulo 3): la estrategia de Combined
Retrieve RAG. El objetivo principal de esta técnica es abordar la limitacién de los siste-
mas RAG tradicionales en cuanto a la diversidad seméantica de los documentos recuperados,
proponiendo un método para enriquecer el contexto proporcionado al LLM y, consecuen-
temente, mejorar la precisién de las respuestas. Primero se detallard la metodologia del
algoritmo de recuperaciéon combinada, y luego se presentara su evaluaciéon experimental.

4.1. Metodologia de Combined Retrieve RAG

Los sistemas RAG tradicionales, si bien son efectivos, a menudo producen un conjunto
de documentos recuperados que, aunque superficialmente similares a la consulta del usua-
rio, pueden carecer de diversidad seméntica y omitir facetas relevantes del conocimiento
disponible. Para abordar esta limitaciéon y mejorar la cobertura tematica, esta tesis pro-
pone Combined Retrieve RAG, una estrategia de recuperacion que integra el conjunto de
preguntas representativas generadas por KRAQ. La idea central es utilizar estas preguntas
precomputadas, derivadas de la estructura profunda del corpus, como consultas comple-
mentarias para enriquecer y diversificar el contexto proporcionado al LLM.

4.1.1. Algoritmo

La estrategia de Recuperaciéon Combinada, denominada Combined Retrieve RAG,
busca enriquecer el conjunto de documentos recuperados para una consulta de usuario
Q. Para ello, aprovecha un conjunto precomputado de preguntas representativas QX =
K, QK. ..., QkK }, generadas previamente por el sistema KRAQ (como se detallo en el
Capitulo 3). El objetivo es obtener un total de M documentos relevantes para la generacion
final de la respuesta.

El proceso se desarrolla en las siguientes etapas, formalizadas posteriormente en el
Algoritmo 4:

1. Seleccion de preguntas auxiliares de KRAQ: Dada la consulta original @, el
primer paso consiste en identificar, dentro del conjunto Q¥ las n preguntas que exhi-
ben la mayor similitud semantica con @. Esta similitud se mide tipicamente mediante
la similitud coseno entre sus respectivas representaciones vectoriales (embeddings). El
hiperpardmetro n define cuantas de estas preguntas de KRAQ, que denominaremos
Qgi(m, se utilizaran como consultas complementarias.

2. Distribucion del esfuerzo de recuperaciéon: Se establece una proporciéon a €
(0,1) para determinar como se distribuye la recuperacion de los M documentos. Una
porcion de |« - M| documentos se recuperara utilizando la consulta original Q. El
presupuesto restante, M’ = M — |« - M|, se asignara equitativamente entre las n
preguntas seleccionadas de ngm, de modo que cada una de ellas buscara recuperar
| M’ /n| documentos.

o4



4.2. Experimentacién y resultados de Combined Retrieve RAG 55

3. Recuperacion documental y consolidacion: La recuperacion se efectiia mediante
una funcion Retrieve(q, m, D), que retorna los m documentos mas relevantes para una
consulta ¢, asegurando que no se incluyan documentos previamente recuperados y
listados en D.

» Primero, se recuperan |« - M | documentos utilizando la consulta original @, sin
exclusiones iniciales: Dg = Retrieve(Q, [o - M |, (). Estos forman el conjunto
base de documentos.

= Luego, para cada pregunta QZ-K € ng, se recuperan | M’'/n| documentos adi-

cionales: Dp, = Retrieve(QX, |M'/n|, Do U (Uj<i Dk;))- Es crucial que en
cada una de estas recuperaciones complementarias se excluyan los documen-
tos ya obtenidos tanto por () como por las preguntas de KRAQ procesadas
anteriormente, para garantizar la diversidad y evitar redundancias.

» Todos los documentos tnicos recuperados (Dg y todos los D) se consolidan

en un dnico conjunto final Dygial.

4. Generacion de la respuesta final: El conjunto consolidado Digta se concatena
para formar el contexto enriquecido. Este contexto, junto con la consulta original
@, se proporciona a un LLM para generar la respuesta final al usuario, siguiendo el
paradigma estandar de RAG [40].

Pseudocédigo

El procedimiento de Recuperacion Combinada se formaliza en el Algoritmo 4.

Algorithm 4 Combined Retrieve RAG

Require: Consulta original @, conjunto de preguntas generadas QF, funcion
Retrieve(q, m, D), namero total de documentos M, proporcion « € (0, 1), namero de
preguntas similares n

Ensure: Respuesta generada Agpal

inm < TopNSimilar(Q, 9%, n) > n preguntas representativas mas similares

Mmain < |+ M |

Msimilar < L(M - mmain)/nJ

Dyotal < Retrieve(Q, mmain, 0)

for cada QF € QX do
D; + Retrieve(QZK , Mgimilars Dtotal) > Recupera documentos unicos
Dtotal — Dtotal U Di

contexto <— ConcatenateDocuments(Dyotal)

Afinal ¢ GenerateAnswer(Q, conterto)

return Ag,a

H
@

4.2. Experimentacion y resultados de Combined Retrieve RAG

En la presente seccién se procede a evaluar el impacto de la integraciéon de las preguntas
representativas, generadas mediante el sistema KRAQ, dentro de un pipeline de RAG
tradicional. Esta integracion se realiza a través del enfoque de recuperacién combinada,
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denominado en este trabajo como Combined Retrieve RAG, cuya metodologia fue detallada
en la Seccion 4.1.

El objetivo de este analisis experimental es determinar si la estrategia de Combined
Retrieve RAG logra una mejora en la precision de las respuestas generadas por el sistema
RAG. Se hipotetiza que dicho incremento en la precisiéon se deriva del enriquecimiento en
la diversidad del conjunto de documentos recuperados, al incorporar informacién comple-
mentaria obtenida a partir de preguntas similares generadas por KRAQ.

A continuacion, se detallaré la configuraciéon especifica de la implementacién utilizada
para esta evaluacion y se analizaran los resultados obtenidos en términos de precisiéon de
respuesta.

4.2.1. Diseno de evaluaciéon

El protocolo de evaluacion de Combined Retrieve RAG se basa en la utilizacion de
conjuntos de datos (datasets) estandar (explicados en la Seccion 3.2.1)

Cada instancia de estos datasets se modela como una tripleta (Q, A, E), donde @
representa la pregunta de referencia formulada por un humano, A la respuesta considerada
correcta o de referencia, y E el corpus de documentos o pasajes textuales asociados a dicha
pregunta y respuesta.

Procesamiento y Generacion de Respuestas

El flujo experimental para cada instancia (@, A, E') del dataset comprende las siguientes
etapas:

1. Generaciéon de preguntas representativas de KRAQ: Como paso preliminar
y fundamental, se aplica el pipeline completo de KRAQ sobre el corpus E corres-
pondiente a cada dataset. Este proceso culmina con la generacién de un conjunto
de preguntas representativas QX = QK. QK ..., Qf }, derivadas de la estructura
semantica del corpus. Este conjunto QX es especifico para cada corpus E.

2. Ejecuciéon del algoritmo de recuperaciéon combinada: Posteriormente, para
cada pregunta de referencia () de una instancia del dataset, se ejecuta el algoritmo
de Recuperacion Combinada (descrito en la Seccion 4.1). La pregunta @ se utiliza
como la consulta original, y el conjunto Q* (generado en el paso anterior a partir del
mismo corpus E) se emplea como el conjunto de preguntas representativas de KRAQ.
La recuperacién de documentos se realiza sobre el corpus completo E asociado al
dataset. El resultado de este proceso es una respuesta generada, Agen.

Baseline
Como baseline para Combined Retrieve RAG se utiliza el algoritmo de Traditional
RAG explicado en la Seccion 2.2

Meétricas de Evaluacion

La calidad de las respuestas generadas Agen por los sistemas RAG se evalué en relacion
con la pregunta original @) y la respuesta de referencia del dataset A. Se emplearon dos
métricas.
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Exact Match (EM). Exact Match (EM) es una medida estandar y rigurosa, amplia-
mente utilizada en tareas de pregunta-respuesta [66]. E1 EM verifica si la respuesta de
referencia A esta exactamente en la respuesta generada Age, después de un proceso de
normalizacién textual. Este proceso de normalizacién es crucial para asegurar una compa-
racion justa y tipicamente incluye:

= Conversion de todo el texto a mindsculas.
» Eliminacion de articulos (e.g., el, la, un, una).
= Eliminacién de signos de puntuacion.

» Estandarizacion de los espacios en blanco (e.g., multiples espacios se reducen a uno
solo, y se eliminan espacios al inicio y al final).

Una respuesta generada se considera correcta segin EM solo si, tras esta normalizacion, la
respuesta de referencia encuentra una coincidencia caracter por caracter en la respuesta de
referencia normalizada. Aunque la métrica EM es considerablemente estricta y no otorga
crédito parcial ni reconoce parafrasis o reformulaciones semanticamente equivalentes, pro-
porciona una estimacién clara y precisa del grado de coincidencia literal entre la respuesta
esperada y la generada. Su simplicidad y objetividad la hacen valiosa para comparar el
rendimiento de los sistemas y es la metrica mas utilizada en la comunidad cientifica ac-
tualmente.

Evaluacién con LLM como Juez. En algunos casos, la métrica de Exact Match resulta
excesivamente estricta. Las respuestas de los datasets pueden admitir miltiples formula-
ciones correctas que, aunque seménticamente equivalentes, diferirian textualmente de la
respuesta de referencia.

Por esta razon, la calidad de las respuesta generada Age, tambien se evalué mediante
un enfoque de Evaluacién con LLM como Juez. Inspirados por trabajos recientes que
validan el uso de modelos de lenguaje de gran capacidad como evaluadores automaticos
de la calidad de texto generado [46, 89|, se emple6 un LLM (Llama-3.1-8b-Instruct) para
determinar si la respuesta generada Agen, aborda la pregunta ) de manera semanticamente
equivalente y correcta en comparacion con la respuesta de referencia A.

El procedimiento fue el siguiente:

Input al LLM-Juez:

» Pregunta de Referencia (Q): |[Texto de @ del dataset]
» Respuesta Generada por el Sistema (Agen): |[Texto de Agen|
= Respuesta de Referencia (Agen): [Texto de Agen)

Instrucciéon para el LLM-Juez:

Considerando la Pregunta de Referencia, jla Respuesta Generada por el Sis-
tema responde a la pregunta de la misma manera y con la misma correccién
factual que la Respuesta Ideal de Referencia? Responda tinicamente con ”S{” o

77NO77

El prompt exacto utilizado se detalla en el Apéndice 7.7. La proporcion de respuestas ”S{”
se toma como la métrica de precision. Este enfoque permite estimar la fidelidad semantica
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y la correcciéon conceptual de la respuesta generada, trascendiendo las limitaciones de una
simple comparaciéon léxica superficial y siendo a veces mas adecuado para respuestas de
formato libre y explicativas.

Justificaciéon del uso combinado. Aunque distintas en su enfoque, EM y LLM-as-
Judge se complementan para ofrecer una evaluacion més completa. EM aporta una medida
objetiva y directa de coincidencia léxica, util por su comparabilidad, pero limitada ante
respuestas seménticamente correctas con distinta formulacion. LLM-as-Judge, en cambio,
permite valorar la equivalencia factual y semaéantica, captando mejor la comprension y
matices del modelo aunque este mas expuesto a riesgos debido a la alucinacién de LLM.
La combinaciéon de ambas metricas permite reconocer tanto la precisiéon literal como la
inteligencia seméntica en las respuestas generadas.

4.2.2. Setup experimental y parametros elegidos

Para evaluar la efectividad de la estrategia Combined Retrieve RAG, se configuré un
pipeline de RAG cuyos componentes y parametros se describen a continuacion. El objetivo
fue comparar el rendimiento de un sistema RAG tradicional con la variante enriquecida
mediante las preguntas representativas generadas por KRAQ.

Componentes del Pipeline RAG:

Modelo Generador: Se empled el modelo 11ama3.1-8b-instruct (en su version cuan-
tizada con AWQ), operando sobre el servidor vLLM. La configuracion y justificacion
de esta eleccion se detallaron en las Seccion 3.2.2.

Retriever (Recuperador): El sistema de recuperacion de informacion se basé en la si-
militud coseno entre representaciones vectoriales (embeddings). Especificamente, se
utilizaron embeddings generados por el modelo nomic-embed-text, y la indexacién
y busqueda vectorial se gestionaron mediante una instancia local de QDrant. Este
componente se describié en la Seccion 3.2.2.

Corpus Documental: Para la evaluacion de Combined Retrieve RAG, se utiliz6 como
base de conocimiento el mismo corpus de documentos de evidencia E (aproximada-
mente 5 millones de tokens por dataset, como se describe en la Secciéon 3.2.2) que
fue procesado previamente por el sistema KRAQ para generar sus preguntas repre-
sentativas. Las preguntas de referencia (QQ) utilizadas para poner a prueba el sistema
Combined Retrieve RAG se seleccionaron de los datasets originales, asegurandose
de que los documentos de evidencia necesarios para responderlas estuvieran conteni-
dos dentro de este corpus E. El nimero de preguntas de referencia de cada dataset
utilizadas para la evaluacion especifica de Combined Retrieve RAG fue el
siguiente:

= TriviaQA: 300 preguntas.

= HotPotQA: 300 preguntas.

= BioASQ: 1000 preguntas.

» PubHealth: 1000 preguntas (afirmaciones).

La selecciéon de un namero a veces limitado de preguntas para estos experimentos con
sistemas RAG se debid, al igual que el submuestreo de los corpus, a consideraciones



4.2. Experimentacién y resultados de Combined Retrieve RAG 59

pragméticas sobre el tiempo disponible para la ejecucion y analisis en el contexto de
esta tesis, buscando obtener una evaluacién indicativa del rendimiento.

Parametros de recuperacion para Combined Retrieve: La estrategia de Combined
Retrieve opera con los siguientes parametros clave:

» Numero total de documentos a recuperar (M): Este valor, también conocido
como top-k en la literatura, define la cantidad total de documentos que se pasaran
al contexto del LLM generador. Para TriviaQA, HotPotQA y BioASQ se estableci
M = 15; para PubHealth, M = 10. Esta diferenciaciéon responde a las caracteristicas
intrinsecas de cada dataset.

» Proporcion de recuperaciéon para la pregunta original («): Define la fraccion
de M documentos que se recuperaran utilizando la pregunta original del usuario (Q).
Se utiliz6 o = 0,5 para todos los datasets, asignando un 50 % del "presupuesto” de
recuperacion a la consulta original.

» Numero de preguntas representativas similares a utilizar (n): Especifica
cuantas preguntas de QX (las mas similares semanticamente a @) se usaran para la
recuperacién complementaria. Se fijo n = 2 para todos los datasets.

En todos los casos, se implement6 un mecanismo para evitar la recuperacién de documentos
duplicados entre la biisqueda original y las bisquedas complementarias. Para cada una de
las n preguntas representativas QZ-G seleccionadas, se recuperd un nimero de documentos
tnicos igual a | (1 —«) - M/n|.

Prompt de generacion: Para la generacion final de respuestas por parte del modelo LLM
(11ama3.1-8b-instruct), se empled un prompt estandarizado, cuya formulacion exacta se
detalla en el Apéndice 7.4. Este mismo prompt se utiliz6 consistentemente para las dos
variantes comparadas:

» Traditional RAG (RAG Base): Recuperacion basada tinicamente en la pregunta
original Q.

= Combined Retrieve RAG: Recuperaciéon enriquecida con las preguntas similares
generadas por KRAQ.
4.2.3. Resultados y analisis

La Tabla 4.1 presenta una comparacion del rendimiento entre la estrategia de RAG
tradicional y Combined Retrieve RAG, utilizando las métricas de EM y Evaluacién con
LLM como Juez. Un analisis detallado revela las siguientes tendencias:

Tab. 4.1: Comparacion de la precision de respuesta entre RAG Tradicional y Combined Retrieve
RAG utilizando Exact Match (EM) y Evaluacion con LLM como Juez (LLM-as-judge).

Dataset Exact Match LLM-as-judge
Traditional Combined Traditional Combined
HotPotQA 57.0 58.6 76.3 77.3
TriviaQA 88.6 89.0 93.6 94.6
PubHealth 65.5 66.2 65.5 66.2

BioASQ 69.6 67.5 78.8 79.5
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Evaluacion mediante LLM como Juez. Al examinar los resultados obtenidos mediante
la Evaluacién con LLM como Juez, que prioriza la correccién seméantica sobre la coinci-
dencia léxica estricta, se observa una mejora consistente y generalizada con la estrategia
Combined Retrieve RAG. Especificamente, en el dataset HotPotQA, la precision se incre-
ment6 de 76.3% a 77.3 %, lo que representa una mejora de aproximadamente el 1.3 %. De
manera similar, en TriviaQA, se registr6 un aumento de 93.6 % a 94.6 %, (+1.1%). Para
PubHealth, el rendimiento también experiment6é un ascenso, pasando de 65.5% a 66.2 %
(+1.1%). Finalmente, en BioASQ, la puntuacion mejor6 de 78.8 % a 79.5 % (+0.9 %). Esta
tendencia uniforme a través de los cuatro datasets, aunque las magnitudes de mejora sean
modestas, sugiere que la diversificacion del contexto de entrada para el LLM generador,
lograda mediante la incorporacién de documentos recuperados a partir de las preguntas
representativas generadas por KRAQ), tiene un impacto positivo. El enriquecimiento con
perspectivas semanticas adicionales parece dotar al LLM de una base informativa més
robusta y diversa, lo que se traduce en una capacidad mejorada para generar respuestas
conceptualmente mas correctas y completas.

Evaluacion mediante Exact Match. En lo referente a la métrica de Exact Match, que
evaliia la coincidencia literal exacta tras la normalizaciéon textual, la estrategia Combi-
ned Retrieve RAG también exhibe una tendencia mayoritariamente positiva, aunque con
matices. En el dataset HotPotQA, el EM se elevo de 57.0% a 58.6 %, lo que representa
un incremento de aproximadamente el 2.8 %. Para TriviaQA, la mejora fue de 88.6 % a
89.0 % (+0.5 %), mientras que en PubHealth, el EM aumenté de 65.5% a 66.2 % (+1.1%).
Estos resultados indican que, en una proporcién significativa de los casos para estos tres
datasets, el contexto diversificado no solo no perjudica la capacidad del LLM para generar
la respuesta literal esperada, sino que puede incluso mejorarla. No obstante, es importante
senalar que el comportamiento en el dataset BioASQ bajo esta métrica presenta ciertas
particularidades.

Consideraciones especificas para la evaluacion en BioASQ. El dataset BioASQ),
debido a la naturaleza de sus respuestas de referencia, requiere una consideracién parti-
cular al interpretar los resultados de evaluacion. Como se describié en la Seccién 3.2.1,
las respuestas de referencia para este dataset se presentan tipicamente como una lista de
entidades o términos (e.g., genes, farmacos) que contestan directamente a la pregunta.

Para la evaluacién mediante Exact Match en este dataset, se utiliz6 esta lista como
respuesta de referencia. Sin embargo, estas listas pueden ser problematicas para una métrica
de coincidencia literal estricta, ya que frecuentemente contienen multiples formas de escribir
la misma entidad, sinénimos, o un nimero extenso de items. Para adaptar la métrica EM
a estas caracteristicas, se implementd una variante para BioASQ: una respuesta generada
Agen se considerd correcta si contenia, de forma literal y tras la normalizacién, al menos
la mitad de los items presentes en la lista de la respuesta de referencia A.

Dada la complejidad inherente a evaluar la cobertura de una lista mediante EM, la Eva-
luaciéon con LLM como Juez se considerd particularmente pertinente para BioASQ, ya
que permite una valoracién mas matizada de si la respuesta generada cubre adecuadamente
los elementos clave de la lista de referencia. Para esta evaluacion, la lista de respuestas de
referencia se convirtié en una cadena de texto. El prompt para el LLM-Juez (detallado en el
Apéndice 7.7) fue modificado para BioASQ aniadiendo las siguientes directrices especificas:
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The reference answers are provided as a list of true answers to the question.
The generated answer should cover most of the items in the reference answers.

Esta adaptacion instruye al LLM-Juez para que verifique si la respuesta generada Agen
incluye la mayoria de los elementos de la lista de referencia A, ofreciendo asi una medida
de la cobertura semantica y factual de la lista.

A pesar de la flexibilizacion en EM, el rendimiento para Combined Retrieve RAG en
BioASQ fue de 67.5 %, una disminucién en comparacion con el 69.6 % del RAG tradicional
(Tabla 4.1). Esta reducciéon en EM contrasta con la mejora observada en la misma tabla
para la evaluacion con LLM-as-judge (que utilizé el prompt adaptado y subié a 79.5%
frente a 78.8 % en el RAG tradicional). Este contraste podria indicar que el contexto mas
diverso de Combined Retrieve RAG lleva al LLM a generar respuestas que, si bien cubren
semanticamente bien los elementos de la lista segin LLM-as-judge, pueden no alcanzar el
umbral de coincidencia literal requerido por nuestra variante de EM, quizas al parafrasear
o presentar los elementos de forma diferente. Este comportamiento resalta la importancia
de analizar los resultados de diferentes métricas de forma conjunta y comprender las par-
ticularidades de cada dataset y método de evaluacion.

Conclusiéon. En conjunto, los resultados obtenidos sugieren que la estrategia Combined
Retrieve RAG, que integra preguntas generadas por KRAQ, representa una optimizacién
valiosa para sistemas RAG. La mejora consistente en la métrica de LLM-as-judge a través
de todos los datasets indica el beneficio de la diversificacién contextual en términos de
calidad seméantica. Las mejoras en EM para la mayoria de los datasets refuerzan esta
observacion.

La tendencia general positiva posiciona a Combined Retrieve RAG como una técnica
prometedora para la optimizacién del rendimiento y la robustez de los sistemas RAG.

4.2.4. Estudios de ablaciéon

Para los estudios de ablacién presentados en esta seccidn, se utilizé la misma cantidad
de preguntas de referencia de los datasets que en los experimentos principales de Combined
Retrieve RAG, con el fin de asegurar la comparabilidad.

Impacto del nimero de preguntas similares de KRAQ

Este estudio de ablacién investiga como varia la precision de Combined Retrieve RAG
al modificar el nimero de preguntas representativas de KRAQ (n) que se utilizan para la
recuperacién complementaria. En este anéalisis, se mantuvo fija la proporcién de recupera-
cion para la pregunta original en a = 0,5, y el ntimero total de documentos recuperados
en M = 15. Los resultados obtenidos sobre el dataset HotPotQA, utilizando tanto Exact
Match como la Evaluaciéon con LLM como Juez, se muestran en la Tabla 4.2.
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Tab. 4.2: Impacto del ntiimero de preguntas similares de KRAQ (n) en la precision (EM % y LLM-
as-judge %) de Combined Retrieve RAG sobre HotPotQA (o = 0,5, M = 15).
Ntmero de Preguntas EM LLM-as-judge
Similares (n)

1 58.67 77.00
2 58.67 77.33
3 58.67 77.33
4 57.00 76.00

Analisis. Los resultados de la Tabla 4.2 indican que el rendimiento de Combined Retrieve
RAG, al variar el numero de preguntas similares (n) manteniendo o = 0,5, exhibe una
notable estabilidad para valores bajos de n, seguida de una disminucién al incrementar n
a 4.

En términos de Exact Match, la precisién se mantiene consistentemente en 58.67 %
para n = 1,2, y 3. Esta estabilidad sugiere que, hasta tres preguntas complementarias,
el sistema logra integrar la informacién diversificada sin una pérdida en la capacidad de
generar la respuesta literal correcta.

Una tendencia similar, aunque con un ligero 6ptimo, se observa con la métrica de LLIM
como Juez. La precision comienza en 77.00 % para n = 1, y alcanza un méaximo de 77.33 %
paran = 2 y n = 3, indicando un pequenio beneficio al incorporar dos o tres perspectivas
adicionales para mejorar la calidad seméntica de la respuesta.

Sin embargo, para ambas métricas, se produce una clara disminucién del rendimiento
cuando el numero de preguntas similares se incrementa a n = 4. El EM cae a 57.00%
y la precision con LLM-as-judge desciende a 76.00 %. Esta caida sugiere que, si bien la
diversificaciéon del contexto mediante multiples consultas es inicialmente beneficiosa, un
numero excesivo de preguntas complementarias, especialmente cuando el presupuesto total
de documentos M es fijo, puede volverse contraproducente. Al distribuir los M documentos
recuperados entre un mayor nimero de consultas, cada consulta obtiene un conjunto més
reducido de documentos. Esto podria llevar a que cada perspectiva adicional no aporte
suficiente informacién nueva o relevante, o incluso que se introduzca ruido o informacién
menos pertinente, disminuyendo la efectividad general del contexto proporcionado al LLM.

Impacto de la proporciéon de recuperacion («)

Este estudio de ablacién examina la influencia de la proporcién «, que determina qué
fraccion del presupuesto total de recuperacion M (fijado en 15 documentos) se asigna a
la pregunta original del usuario, y qué fraccién se distribuye entre las preguntas comple-
mentarias de KRAQ. Para este analisis, se mantuvo fijo el nimero de preguntas similares
de KRAQ en n = 2. Se incluy6 también el caso de a = 1,0, que equivale al RAG tradi-
cional donde todos los documentos se recuperan tnicamente con la pregunta original. Los
resultados obtenidos sobre el dataset HotPotQA, utilizando tanto FExact Match como la
Evaluaciéon con LLM como Juez, se presentan en la Tabla 4.3.
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Tab. 4.3: Impacto de la proporcion de recuperacion para la pregunta original («) en la precision
(EM % y LLM-as-judge %) de Combined Retrieve RAG sobre HotPotQA (n = 2, M =
15). El caso a = 1,0 representa el RAG Tradicional.

Proporcién o EM LLM-as-judge

0.25 56.00 75.00
0.50 58.60 77.33
0.75 59.60 77.33
1.00 (Tradicional)  57.00 76.30

Analisis.En términos de Exact Match, se observa un pico de rendimiento con o« = 0,75,
alcanzando 59.60 %. Este valor es superior tanto al RAG tradicional como a configuraciones
con menor peso en la pregunta original. Esto sugiere que una estrategia que combina
una fuerte ponderacion de la pregunta original (75 %) con una contribucién menor pero
significativa de las preguntas de KRAQ (25 % distribuido entre n = 2 preguntas) es la mas
efectiva para obtener la respuesta literal precisa.

Con la métrica de LLM como Juez, la tendencia es similar, con el rendimiento maximo
de 77.33 % alcanzado tanto con a = 0,50 como con a = 0,75. Ambos valores superan al
RAG tradicional y a la configuracién con o = 0,25 .

En conjunto, estos resultados confirman que la pregunta original del usuario es el ancla
fundamental para la relevancia, pero que la diversificacion contextual introducida por las
preguntas de KRAQ puede conducir a mejoras en la precision. Una dependencia excesiva
de las preguntas complementarias (como en o = 0,25) o la ausencia total de ellas (o = 1,0)
no resulta en el rendimiento 6ptimo observado con o« = 0,50 o o = 0,75.

En los resultados principales de la tabla 4.1 se utilizo o = 0,50 ya que la primera
hipotesis habia sido que distribuir de manera equitativa los documentos seria lo optimo.
Este estudio de ablacién que se realizé posteriormente a esos experimentos da indicios de
que o = 0,75 ofreceria aun mas beneficios en relacion al RAG Tradicional. No se pudo
realizar la tabla principal de experimentos con este pardmetro debido a la falta de tiempo.

Impacto del modelo generador de preguntas de KRAQ

Este estudio de ablacién se centrdé en determinar céomo la calidad y el método de gene-
racion de las preguntas representativas de KRAQ (QF) influyen en el rendimiento final del
sistema Combined Retrieve RAG. Para este anélisis, se mantuvo constante la configuraciéon
de recuperacion de Combined Retrieve RAG (con M = 15 documentos en total, n = 2
preguntas similares de KRAQ, y a = 0,5), y se vari6 el origen de las preguntas or.

Las variantes del generador de preguntas de KRAQ consideradas fueron las mismas
que en la evaluacion de KRAQ (ver Seccion 3.2.7):

1. KRAQ (Fine-tuned): Utiliza el conjunto de preguntas Q% generado por el modelo
de KRAQ con fine-tuning especifico (Seccion 3.2.5). Esta es la configuracion estandar
de Combined Retrieve RAG en los resultados principales.

2. KRAQ (Instruct): Utiliza preguntas Q* generadas por el modelo LLaMA 3.1-8B
Instruct, aplicado sobre los mismos restimenes comunitarios de GraphRAG.

3. Baseline-Aleatorio: Utiliza preguntas Q% generadas por el baseline aleatorio (Sec-
cion 3.2.3), que formula preguntas a partir de chunks de texto seleccionados al azar.
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La evaluacion se realizé sobre el dataset BioASQ. Se presentan los resultados para am-
bas métricas: Exact Match y la Evaluacién con LLM como Juez, ambos con la adaptaciéon
para BioASQ descrita en la Secciéon 4.2.3. Los resultados se muestran en la Tabla 4.4.

Tab. 4.4: Impacto del modelo generador de preguntas de KRAQ en la precision (EM % y LLM-as-
judge %) de Combined Retrieve RAG sobre BioASQ (M = 15,n =2, = 0,5).
Modelo Generador de EM LLM-as-judge

Preguntas or

KRAQ (Fine-tuned) 67.5 79.5
KRAQ (Instruct) 65.1 75.7
Baseline-Aleatorio 65.3 7.7

Analisis. Los resultados de la Tabla 4.4 indican una clara dependencia del rendimiento
de Combined Retrieve RAG con respecto a la calidad y el método de generacion de las
preguntas representativas QF utilizadas.

El uso de preguntas generadas por el modelo KRAQ con fine-tuning especifico consis-
tentemente resulta en la mayor precision en ambas métricas: 67.5% en EM y 79.5% en
LLM-Juez. Esto sugiere que las preguntas que son seménticamente méas relevantes (como
las que produce el KRAQ fine-tuned, segtin se observo en la Seccion 3.2.7) son mas efectivas
para guiar la recuperacién de documentos complementarios que enriquecen el contexto del
LLM generador de respuestas.

Es interesante observar el comportamiento de las otras dos variantes. El Baseline-
Aleatorio, que genera preguntas directamente de chunks del corpus, alcanza un 65.3 %
en EM y un 77.7% en LLM-Juez. Estos valores superan a los obtenidos por KRAQ
(Instruct) (65.1 % en EM y 75.7 % en LLM-Juez), que utiliza el modelo preentrenado sobre
resimenes comunitarios. Este hallazgo sugiere que, en ausencia de un fine-tuning especifico
que oriente al modelo generador de preguntas, las preguntas derivadas directamente del
texto del corpus (aunque de forma aleatoria y sin anélisis estructural profundo como en
el Baseline-Aleatorio) pueden ser marginalmente mas efectivas para la recuperacion que
aquellas generadas por un modelo instruct generalista a partir de restimenes abstractos. El
modelo KRAQ (Instruct), aunque opera sobre representaciones tematicas més cohesivas
(los resimenes comunitarios), podria no estar suficientemente calibrado para transformar
estos restimenes en las consultas mas significativas para la recuperacion sin el entrenamiento
especifico que recibe KRAQ (Fine-tuned).

La superioridad del KRAQ fine-tuned sobre ambas alternativas subraya la importancia
no solo de una buena representacion del contenido (resimenes comunitarios) sino también,
y de manera crucial, de un modelo generador de preguntas especificamente entrenado para
producir consultas que sean seménticamente relevantes y efectivas en un contexto de recu-
peracion. Este estudio de ablacién refuerza la conclusion de que la calidad y la especificidad
del entrenamiento del generador de preguntas de KRAQ son factores determinantes para
el éxito de las optimizaciones propuestas en los sistemas RAG.



5. EFFICIENT SPECULATIVE RAG

Este capitulo presenta la segunda aplicacién principal de las preguntas generadas por
KRAQ (Capitulo 3): una optimizacion para el framework Speculative RAG [78| (Explicado
en Seccion 2.2.3), denominada Efficient Speculative RAG. El objetivo es mitigar el cuello
de botella computacional asociado al célculo en linea de embeddings instruidos en el Spe-
culative RAG original, proponiendo un método de pre-computo basado en las preguntas
de KRAQ. Se detallara la metodologia de esta variante eficiente y se evaluara su impacto
en la latencia y la calidad de las respuestas.

5.1. Metodologia de Efficient Speculative RAG

En esta seccion se presenta una propuesta de mejora orientada a optimizar la eficiencia
del framework Speculative RAG [78§].

Antes de detallar nuestra optimizacion, recordemos brevemente que Speculative RAG
(Explicado en profundidad en la Seccion 2.2.3) opera bajo el paradigma draft-then-verify.
En lugar de que un tnico LLM grande procese todo el contexto recuperado, miltiples
modelos "borrador” (Mpyafter), més pequenos y rapidos, generan en paralelo un conjunto
de respuestas candidatas, cada uno operando sobre un subconjunto diferente de los docu-
mentos recuperados. Posteriormente, un modelo "verificador” (Mvyerifier), usualmente mas
potente, evaliia estos borradores y selecciona el de mayor calidad como respuesta final.
Este enfoque busca reducir la latencia y explorar un espacio de respuestas mas amplio.

Como se expuso en la Seccion 2.2.3, uno de los principales factores que comprometen
la eficiencia del pipeline Speculative RAG original es la exigencia en el calculo para la
creacion de los subconjuntos, alli debe calcular los embeddings para cada nueva pregunta
del usuario @, los embeddings £(d; | @) para cada documento recuperado d; € D. Este
proceso, al ser dependiente de (), debe repetirse cada vez que la pregunta cambia, lo que
imposibilita la precomputacién y dificulta la escalabilidad del sistema.

Efficient Speculative RAG soluciona este problema al separar la generacion de los em-
beddings instruidos del tiempo de consulta. En su lugar, se aprovechan embeddings pre-
computados para cada documento del corpus, los cuales han sido generados en funcién de
las preguntas representativas obtenidas mediante KRAQ. Estas preguntas, al reflejar los
ejes tematicos principales del corpus, actiian como proxies semanticos para las consultas
mas relevantes (como fue evidenciado en la evaluacion de KRAQ Seccion 3.2.7).

5.1.1. Algoritmo

El procedimiento de Efficient Speculative RAG se articula en dos fases principales,
disenadas para optimizar la eficiencia de Speculative Rag: una fase de precomputacion
realizada offline y una fase de inferencia online.

Fase de precomputacion (Offline)

El objetivo de esta fase es precomputar de antemano los embedding instruidos para
optimizar la latencia de Speculative Rag.

65
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1. Generacion de preguntas representativas: A partir del corpus global de docu-
mentos F, se genera un conjunto de k preguntas representativas Q~ = {Q{( , Q£{ s Qf }
mediante KRAQ.

2. Calculo y almacenamiento de embeddings instruidos precalculados: Para
cada documento d; € E y para cada pregunta representativa QJK € OF, se calcula su
correspondiente embedding instruido. Estos embeddings se almacenan en un indice
o tabla de consulta Epe. Formalmente, para cada par (d;, Q]K )

Bpre(di, QF ) = €(d; | QF) (5.1)

donde £(d; | Qf ) denota el embedding del documento d; instruido por la pregunta

representativa QJK . Asi, para cada documento d;, se almacena un conjunto de k
embeddings precalculados, uno por cada pregunta representativa.

Fase de inferencia (Online)

1. Recuperacion inicial de documentos: Ante una nueva pregunta del usuario @,
se realiza una recuperacion inicial de un conjunto de n documentos relevantes D =
{di,ds,...,d,} desde el corpus E segun similitud coseno.

2. Seleccion de la pregunta representativa mas similar: Se identifica la pregunta
representativa, ng € QX que exhibe la mayor similitud semantica con la pregunta

del usuario ) segun la similitud coseno:

K = arg max (cos(emb(Q), emb(QJK)))

sim
QFegr

3. Utilizacién de embeddings precalculados para clustering: Para cada uno de
los n documentos d; € D recuperados en el paso 1, se accede a su embedding precal-
culado correspondiente a la pregunta representativa seleccionada ng. Es decir, se

utiliza Epe(d;, gm), obtenido de la tabla Ep. (ver Ecuacion 5.1). Estos n embed-

dings precalculados especificos son los que se emplearén para realizar el agrupamiento
tematico (clustering) mediante el algoritmo K-Means.

4. Aplicacién del pipeline estandar de Speculative RAG: Una vez definidos los
clusters a partir de los embeddings Epye(d;, ng), el proceso continiia con el pipeline
estandar de Speculative RAG, tal como se describi6 en la Seccion ?77?. Esto incluye:
= Muestreo de subconjuntos de documentos a partir de los cltsteres.
= Generacion paralela de borradores de respuesta («;, 3;) para cada subconjunto,
utilizando el modelo especialista Mp,atter-
= Evaluacién de los borradores y seleccion de la respuesta final A mediante el
modelo generalista Mverifier-

Formalizacién de Efficient Speculative Rag

El procedimiento de Efficient Speculative RAG se formaliza en el Algoritmo 5.
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Algorithm 5 Algoritmo de Efficient Speculative RAG (Inferencia Online)

Require: Pregunta del usuario ), Corpus de documentos F, Tabla de embeddings pre-
calculados Epre, Conjunto de preguntas representativas OF . Namero de documentos a
recuperar n, Nimero de subconjuntos m, Numero de clisteres k.

Ensure: Respuesta predicha A para la pregunta Quser-

1: function EFFICIENTSPECULATIVERAG(Q, E, Epre, @, n,m, k)
2: D + RetrieveDocs(Q, E, n)

3: K« RetrieveSimilarQuestion(Q, Q)

4: F + @

5: for cada d; € D do

6: E <+ EU{Epe(d;, QK 1} > Embeddings precalculados de D para QX
7: {c1,¢2,...,¢c1} < K-Means(FE, k)

8: JANE == @

9: for j =1tomdo

10: §j <0

11: for [ =1to k do

12: d; < 0; U {SampleOne(c;)} > Muestrear un documento de cada clister ¢
13: A+~ AU}

14: Drafts < ()
15: for all ; € A in parallel do

16: (0, Bj) = Mprafter-generate(Q, 6;)

17: P = Porasier(Bj | Q,65) + Poratier (@ | Q,65)

18: pielf—contain s PDrafter(aj, Bj | Q, 5])

19: pj'elf_reﬂe“ — Pyesisier (“Yes” ‘ Q, aj, Bg)

20: pginal . p?raft . pjelf-contain . pj'elf-reﬁect

21: Drafts < Drafts U {(c, pg-inal)}

22: (fl, ) < arg max, . p?nal)eDraftspjﬁnal > Seleccionar el mayor score final

23: return A

5.2. Experimentacion y resultados de Efficient Speculative RAG

En la presente seccidon se exponen los detalles experimentales y los resultados obteni-
dos al evaluar la variante optimizada de Speculative Rag denominada Efficient Speculative
RAG. El disenio experimental que se detalla a continuacion tiene como objetivo principal
cuantificar la ganancia en eficiencia (medida en términos de latencia) y, simultaneamente,
verificar que la calidad de las respuestas generadas por Efficient Speculative RAG se man-
tiene comparable a la del método base. Para ello, se describiré el setup experimental, la
implementacion especifica de los componentes criticos y los parametros seleccionados, cul-
minando con un andlisis comparativo de los resultados frente al Speculative RAG original.

5.2.1. Diseno de evaluacion

Con el objetivo de evaluar empiricamente el rendimiento del método propuesto, se
diseni6 un protocolo experimental que permite una comparaciéon directa con el algoritmo
original de Speculative RAG [78|. Esta comparacion se centra en dos aspectos clave: la
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latencia de inferencia y la precision de las respuestas generadas. El propdsito principal de la
evaluacion es verificar que la eliminacién del computo en linea de los embeddings instruidos
(elemento central de nuestra propuesta) no compromete la calidad de las respuestas, al
mismo tiempo que permite una mejora significativa en la latencia del sistema

La evaluacion se fundamenté en el uso de datasets estandar de QA, donde cada ins-
tancia se modela como una tripleta (Q, 4, F). En esta tupla, @) representa el conjunto de
preguntas del dataset, A el conjunto de respuestas consideradas correctas, y E el corpus
de documentos de evidencia del dataset que sirven como base de conocimiento para las
preguntas.

Protocolo de evaluacion detallado

El procedimiento experimental seguido para el dataset (Q, A, E) de evaluacion fue el
siguiente:

1. Preprocesamiento del corpus (fase offline para Efficient Speculative RAG):

= Se aplico KRAQ sobre el corpus E para generar un conjunto de preguntas
representativas QF = {Q¥ ... ,QkK}.

= En un escenario ideal, la fase offline de Efficient Speculative RAG implicaria
el pre-computo exhaustivo de los embeddings instruidos. Especificamente, pa-
ra cada documento d; del corpus E y para cada pregunta representativa Qf
del conjunto QX generado por KRAQ, se calcularia y almacenaria el embed-
ding &(d; | Qf ) utilizando InBedder-RoBERTa, conformando asi una tabla de
consulta Epye(d;, Q}K ). No obstante, debido a las limitaciones temporales y de
recursos computacionales inherentes al desarrollo de esta tesis, este pre-computo
completo no fue factible. En su lugar, para poder evaluar tanto el impacto en
la latencia como la precisiéon del sistema utilizando los embeddings conceptual-
mente correctos (aquellos instruidos por ng), se adopt6 un procedimiento de

estimacion, el cual se detalla en la Seccién 5.2.4.

Este paso es exclusivo de la preparaciéon para Efficient Speculative RAG y se realiza
una tinica vez por corpus.

2. Ejecucion comparativa de algoritmos (Fase Online): Para cada pregunta de
referencia () de la instancia actual, y utilizando los documentos del conjunto E como
base para la recuperacién, se ejecutaron ambas versiones del algoritmo para generar
una respuesta Agen:

» Speculative RAG (Original): Se recuper6 un conjunto D de documentos de
E basado en Q). Luego, se calcularon los embeddings instruidos InBedder(d;, Q)
para cada d; € D en tiempo de ejecucion, utilizando ) como instruccién.

= Efficient Speculative RAG: Se recuperd un conjunto D de documentos de E
basado en Q. Se seleccioné la pregunta representativa ng € OF mas similar a
Q. Posteriormente, se utilizaron los embeddings precomputados Epe(d;, Q% )

para el clustering de los documentos d; € D.

Ambas variantes procedieron luego con el muestreo de subconjuntos, la generaciéon
de borradores y la verificacion para producir sus respectivas Agen.
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3. Aplicacién de métricas de evaluacion: Para cada Age, obtenida por ambos mé-
todos, se comparo con la respuesta de referencia A utilizando las siguientes métricas:

» Ezact Match (EM): Se midi6 la coincidencia literal exacta entre Agen y A, tras
la normalizacion textual estandar.

» Fvaluacion Semdntica con LLM como Juez: Un LLM (Llama3.1-8b-instruct)
evalud si Agen responde adecuadamente a ) de manera semanticamente equiva-
lente a A, siguiendo el protocolo detallado.

Estas dos métricas fueron explicadas de manera mas detallada en la Seccion 4.2.1

4. Mediciéon de latencia: Adicionalmente, se registro la latencia total de inferencia
para cada método. Esta medicién abarcd todos los componentes del pipeline online:

Recuperacion inicial de documentos (comtn a ambos).

Computo de embeddings instruidos (aplicable solo a Speculative RAG original).

Seleccion de ng y estimacion de la recuperaciéon de embeddings precompu-

tados (aplicable solo a Efficient Speculative RAG, estimacion explicada en 5.2.4).

Clustering y generacién de subconjuntos de documentos.

Generaciéon de borradores y proceso de verificaciéon final.

Esta evaluacion comparativa busca proporcionar una base empirica sélida para validar
la hipotesis central de que Efficient Speculative RAG conserva la calidad de respuesta del
sistema original, al tiempo que elimina su principal cuello de botella computacional. De
confirmarse, esto abriria el camino hacia implementaciones més escalables y eficientes de
este avanzado paradigma de RAG en entornos de produccion.

5.2.2. Calculo de scores

La selecciéon del borrador final en el pipeline de Speculative RAG, tanto en su version
original como en la variante Efficient Speculative RAG, se fundamenta en una puntua-
cion combinada p; para cada par de borrador de respuesta y racional (a;,3;). Confor-

me a lo explicado en la Seccion 5.1.1, esta puntuacion agrega tres componentes: pdraft

j )
p?e”'contam y pj-elf'reﬁeCt. En nuestra implementacién, estos elementos se derivaron de las

log-probabilidades de los tokens generados, obtenidas mediante el pardmetro logprobs de
la API del cliente OpenAl en comunicacién con el servidor vLLM.

Procesamiento inicial: segmentacion de racional y respuesta El modelo Mp;agter
fue instruido para producir una tnica secuencia textual que contiene tanto el racional f3;
como la respuesta o (detalles del formato JSON en Seccion 5.2.5). Para discernir las log-
probabilidades correspondientes a cada segmento, se aplicé una heuristica basada en la
identificacion de subcadenas de tokens, tales como “ration” o “resp”. Una vez localizados
dichos marcadores, se delimitaron las subsecuencias de tokens Tp, (para el racional) y Ty,
(para la respuesta), junto con sus respectivas log-probabilidades.

Consideraciones sobre la estabilidad numérica y definicién de métricas de con-
fianza La formulacion teorica de los scores en Wang et al. [78] se apoya en la probabilidad
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de secuencia completa, P(S). La probabilidad de una secuencia se estima como la produc-
toria de las probabilidades de sus tokens constituyentes: P(S) = [],cq P(t). Sin embargo,
en la préactica computacional, la multiplicacién directa de un gran nimero de probabilida-
des (valores inherentemente menores que 1) conduce al conocido problema del underflow
numérico: el resultado se vuelve tan extremadamente pequeno que la precision del compu-
tador no puede representarlo y colapsa a cero.

Dado que el servidor vLLM, utilizando el cliente de OpenAl, ya proporciona las log-
probabilidades (Logprobs) de cada token, el calculo de la probabilidad de secuencia P(S) se
realiza mediante la siguiente formulacién, que transforma la productoria de probabilidades
en una suma en el espacio logaritmico:

P(S) =exp (Z logprob(t)> :

tesS

No obstante, en nuestra implementacién, esta formulaciéon resultd insuficiente para
secuencias extensas como las generadas para los pares (a;, ;). La suma de un gran ntimero
de log-probabilidades (que son negativas) producia un valor tan pequeno que, al aplicar
la exponencial, el score final colapsaba sisteméticamente a cero. Este colapso impide una
diferenciacién efectiva entre los borradores, volviendo en la practica aleatoria la seleccién.

Para esquivar esta limitacion y asegurar la estabilidad numeérica, se adopt6 una métrica
de confianza, denotada P.one(.S), basada en la exponencial de la log-probabilidad promedio
de los tokens de la secuencia S generados por un modelo especifico. Si S es una secuencia
de L tokens, esta métrica se define como:

Pconf(S> = exp <11—/ Z logprob(t)> :
teS
Esta medida ofrece una cuantificacion de la confianza normalizada por la longitud de la
secuencia y es considerablemente mas robusta frente al underflow. Si bien representa una
desviacion de la probabilidad de secuencia teorica usada en el paper original (donde no
se especifica como se manejo este problema), se consider6 una aproximacion pragmatica y
necesaria para la viabilidad de la implementacién.
Los tres componentes del score p; se calcularon utilizando esta métrica Ponf, especifi-
cando el modelo correspondiente en cada caso:

Componentes del score

p;jraft (Puntuacién del borrador): Refleja la confianza combinada del modelo Mpafter €n

la generacion del racional §; y la posterior respuesta o;:

f
p;lrat — PMDrafter<5j ’ Q75]) + PMDrafter(aj ’ Q)dj?ﬁ])

En nuestra implementacion, estas probabilidades se aproximaron sumando las con-
fianzas P.ons de cada segmento:

p?raft ~ Conf(Tﬁj) + Pconf(TOéj)'

pjelf'contai“ (Puntuacion de auto-contencién): Mide la coherencia interna del par (o, 5;),
representada por la probabilidad conjunta de que Mpyager genere ambos elementos
dado el contexto:

If-contai
pj'e coman = PMDrafter (Oé], BJ ’ Q7 5j)
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Esta probabilidad conjunta se estimé aplicando la métrica P.out a la secuencia com-
pleta de tokens concatenados Ty, gp;:

self-contain
I~

pj conf(TajEBBj)-

pjelf’reﬁe“ (Puntuacién de auto-reflexién): Evalta la confianza del modelo Myepifer €n que
el racional 3; soporta adecuadamente la respuesta «;. Teéricamente, es la probabili-
dad de que el verificador responda "Yes”:

1f-reflect
p‘?e = PMVcriﬁcr (”Yesw | Q’ Oé]7ﬁ-])

Esta probabilidad se obtuvo de la confianza P, en la respuesta del verificador,
Averit, (ver Apéndice 7.6 para ver prompt exacto utilizado):

: oy o)
pself—reﬂect ~ PCOHf(TAgen) 51 Agen ="Yes
/ 1 — Poont(Thye,) i Agen = "No”

Calculo del score final combinado p; Habiendo calculado cada componente como una
medida de confianza normalizada, el score final p; para el borrador j se obtuvo mediante
su producto. Esta estructura es consistente con la propuesta por Wang et al. 78]:

_ draft self-contain self-reflect

Pj=P; P “Pj
Este producto asegura que cada dimensiéon de la calidad del borrador influya en la eva-
luacion global. La respuesta «; asociada al p; maximo fue seleccionada como la respuesta
definitiva A:

A = arg max(p;).
@

Esta implementacion, con sus adaptaciones para la estabilidad numérica, busca preservar
la funcionalidad esencial del mecanismo de scoring de Speculative RAG.

5.2.3. Paralelismo y estimacion de latencia

Una de las ventajas conceptuales del algoritmo Speculative RAG [78], y por extension
de nuestra variante Efficient Speculative RAG, es la capacidad de procesar los m subcon-
juntos de documentos J; en paralelo. Este paralelismo se aplica tanto a la generacion de
los borradores de respuesta y racional (o, ;) mediante los modelos Mpyafter, cOmo a la
evaluaciéon de dichos borradores con el modelo Myerifier- Esta capacidad de ejecucién en
paralelo es fundamental para mitigar el posible incremento en la latencia total que podria
suponer la generacion y evaluacién de multiples candidatos de respuesta.

Debido a las limitaciones en los recursos computacionales disponibles para esta tesis
(especificamente, una inica GPU NVIDIA GeForce RTX 3090), no fue factible implementar
una ejecuciéon verdaderamente paralela de las m instancias de Mpyafter ¥ Mverifier- EN su
lugar, los m subconjuntos de documentos fueron procesados de manera secuencial. Para
cada consulta g. del conjunto de prueba (donde ¢ es el indice de la consulta) y para cada
uno de sus m subconjuntos de documentos d ;:

1. Se genero el par (acj, B ;) utilizando el modelo Mpyatier, registrando el tiempo de
ejecucion tgrjaft.
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2. Posteriormente, se evalud este par con el modelo Mvyerifier para obtener el score

pifjl-f‘reﬂe“ (v las log-probabilidades necesarias para los otros componentes del sco-

verify

re pej), registrando el tiempo de ejecucion bej -

El tiempo total de esta fase de generacion y verificacion si se ejecutara de forma puramente

. C 3
secuencial para los m borradores de una consulta g, 7 serfa:

secuencial-gv’

m

T(C) — Z(tccizaft + tverify).

secuencial-gv c,j
Jj=1

Estimacion de la latencia en un escenario paralelizado por consulta

Para estimar la latencia que se habria obtenido en un escenario con paralelismo ideal,
donde se dispone de suficientes recursos para procesar las m operaciones de drafting si-
multaneamente (y anédlogamente para las m operaciones de verificacion) para una consulta
dada ¢, se adopt6 un enfoque comun en la literatura [77]. Se asume que la latencia de una
etapa paralelizada esté determinada por el tiempo de procesamiento de la tarea méas lenta
dentro de ese conjunto de operaciones paralelas.

Especificamente, para una consulta gq., si tgrfft es el tiempo registrado para generar

el j-ésimo borrador (de m borradores) y t\c'ejrify es el tiempo para verificarlo, la latencia

estimada para la fase de drafting en paralelo para esa consulta es:

7' max (et (5.2)

paralelo-draft — G=1, om
Y la latencia estimada para la fase de verificacion en paralelo para esa consulta es:

(o) _ ’ verify

Tparalelo—verify - j:nll’?j%m(tc,j ) (53)
Dado que la verificacion de un borrador (aj, ;) depende de su previa generacion, y
asumiendo un pipeline donde, para una consulta q., todas las generaciones de borradores
ocurren antes que todas las verificaciones (o que existe la capacidad de paralelizar ambas
etapas en su conjunto), la latencia total estimada para la fase combinada de generacion y

. ., - Cc
verificacién de los m borradores para esa consulta especifica (T( )

draft_verify) S€ calcula como

la suma de estas dos latencias maximas:

T(C) (¢)

_ (c)
draft-verify — Tparalelo-draft + Tparalelo-verify'

(5.4)

Calculo de la latencia total agregada y representativa

Para obtener una medida general y robusta de la latencia por consulta para cada uno
de los algoritmos evaluados (Speculative RAG original y Efficient Speculative RAG), se
midieron los tiempos de ejecucion de las diferentes etapas del pipeline para cada consulta
individual ¢. en el conjunto de datos de prueba. Estas etapas, medidas por consulta, son:

1. T r((ft)rieve: Tiempo empleado en la recuperacién inicial del conjunto de Nyetrieved docu-

mentos relevantes desde el corpus para la consulta gc.

2. Tercnb ed-cluster: L1€MPO necesario para la etapa de obtencion de embeddings y clustering

para la consulta q..
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= Para el Speculative RAG original: este tiempo incluye el calculo en linea de los
embeddings instruidos £(d; | Q.) v el siguiente clustering y muestreo.

= Para Efficient Speculative RAG: este tiempo representa el costo de seleccionar la
pregunta QX mas similar a Q., el costo (estimado) de recuperar los embeddings

precalculados Epe(d;, Qgi{m), y el costo del clustering y muestreo. La metodologia

detallada para la medicién y estimaciéon de este componente en el contexto

de esta tesis, dada la ausencia de un pre-computo completo, se describe en la

Secciéon 5.2.4.

Esta etapa es donde Efficient Speculative RAG introduce su principal optimizacion
de latencia.

(c) Ty s : .
3. T draft-verify’ Tiempo estimado para generar y verificar los m borradores para la con-

sulta q., utilizando la estimacion de latencia paralela dada por la Ecuacion 5.4.

4. Ts(ecl)ect: Tiempo para calcular los scores finales p.; y seleccionar el mejor borrador

para la consulta ¢.. Esta etapa es generalmente muy rapida y de tiempo despreciable.
Una vez registradas estas mediciones (T‘r(ect)rieve7 e(gbed-cluster’ (gf;ft-verify’ Ts(ecl)ect) para cada
una de las IV, consultas del conjunto de prueba, se calcula la mediana de los tiempos para
cada una de estas cuatro etapas a través de todas las N,. El uso de la mediana en lugar
de la media aritmética proporciona una estimacién més robusta de la tendencia central,
menos sensible a posibles valores atipicos (outliers) que podrian surgir debido a errores pro-
venientes de los modelos LLM como la generacién inusual de borradores extremadamente
largos debido a bucles en la generacion. Denotemos estas medianas como med (7} etrieve ),
med<Tembed—cluster)a med(Tdraft—Verify)a y med(Tselect>-
Por lo tanto, la latencia total representativa (L™ed

faccl) bara procesar una consulta pro-
medio se calcula como la suma de estas medianas:

Lir;r(l)(égl = med(Tretrieve) + med(Tembed—cluster) + med(Tdraft—verify) + med(Tselect)- (55)

Al comparar FEfficient Speculative RAG con el Speculative RAG original, la diferencia mas
significativa en la latencia se espera en el componente med(Tembed-cluster)- Para los de-
mas componentes, especialmente med(Tgrafe-verify), s utiliza la misma estimacion paralela
(Ecuaciones 5.2 y 5.3) para asegurar una comparacion equitativa del potencial de paraleli-
zacion inherente al algoritmo. Los resultados detallados de estas mediciones y estimaciones
de latencia (basadas en la mediana) se presentaran y analizaran en la Seccion 5.2.8.

5.2.4. Complejidad del pre-computo de embeddings instruidos en Effi-
cient Speculative RAG y su estimacion

Una consideracion importante para la viabilidad practica de Efficient Speculative RAG
es la complejidad computacional asociada a la fase de pre-computo offline, donde se generan
y almacenan los embeddings instruidos Epye(d;, QJK ) (ver Ecuacion 5.1).

Teoéricamente, para un corpus con Np documentos (o chunks d;) y un conjunto de Ng
preguntas representativas QJK generadas por KRAQ), la complejidad de este pre-computo
seria del orden de O(Np x Ng X Cemp), donde Cemp, es el costo de generar un embedding
instruido para un par (documento, pregunta). Si tanto Np como Ng son grandes, este pro-
ceso puede ser considerablemente intensivo en tiempo y almacenamiento. Por ejemplo, para
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un corpus que resulta en 15,000 chunks y un sistema KRAQ que genera 20,000 preguntas
representativas (considerando diferentes niveles jerarquicos), se requeririan 300 millones de
inferencias del modelo de embeddings instruidos.

Hipotesis de optimizacién del pre-cémputo. Una hipdtesis para mitigar esta com-
plejidad es que no serfa necesario precomputar los embeddings instruidos para todos los
documentos del corpus con respecto a cada pregunta representativa Qf . En su lugar, po-
dria ser suficiente precomputar Epe(d;, QJK ) solo para un subconjunto de los documentos
d; que son mas propensos a ser relevantes para QJK . Por ejemplo, para cada Q]K , se podria
primero realizar una busqueda seméntica estandar (usando embeddings no instruidos, como
los de nomic-embed-text) para encontrar los My = 1000 documentos més similares a Qf .
Luego, el pre-computo de los embeddings instruidos con InBedder-RoBERTa se limitaria a
estos M documentos para esa QJK particular. Bajo esta optimizacion, la complejidad del
pre-computo se reducirfa a aproximadamente O(Ng x My X Cemp, + N X Csearch), donde
Casearch €s €l costo de la busqueda semantica inicial. Si My < Np, esto podria representar
un ahorro sustancial, haciendo que la complejidad sea lineal con respecto al nimero de
preguntas representativas. No obstante, la validacién de que un valor de My (como 1000)
es suficiente para no degradar el rendimiento del clustering posterior en Efficient Specula-
tive RAG resta como un trabajo futuro y no se explor6 en esta tesis.

Manejo de la estimacién de latencia en esta tesis. Debido a las limitaciones de
tiempo y recursos computacionales inherentes al desarrollo de esta tesis de licenciatura, no
fue factible realizar el pre-computo exhaustivo de todos los pares (d;, QJK ) para los datasets
y el volumen de preguntas generadas por KRAQ. Para poder, no obstante, obtener una
estimacién fiel del rendimiento y la ganancia en latencia que Efficient Speculative RAG
ofreceria si el pre-computo se hubiera realizado, se adopté la siguiente estrategia durante
la fase de experimentacién online para esta variante:

1. Para una consulta de usuario ()., se recuperé la pregunta representativa mas similar

K (como se describe en la Seccién 5.1.1). Se registré el tiempo de esta operacion

de bisqueda de ng, denotado como T, (cs)im.

2. Luego, en lugar de buscar en una tabla precalculada Fy.e, se calcularon en ese mo-

mento los embeddings instruidos &(d; | ng) para 1os Nyetrieved documentos d; que

habian sido recuperados inicialmente para Q.. Se registr6 el tiempo Téf&ine_emb que
tomo esta operacion especifica de generacién de embeddings instruidos.

3. Posteriormente, se realizé el clustering K-Means sobre estos embeddings recién cal-
culados y el muestreo de los subconjuntos o, ;. Se registr6 el tiempo de esta fase de

(©)

clustering y muestreo como cluster-sample

4. El resto del pipeline de Efficient Speculative RAG procedié utilizando los subconjun-
tos d.,; derivados.

5. Para estimar la latencia que Efficient Speculative RAG habria tenido con un pre-

computo ideal, el componente Te(rcn)bed—cluster

construyé de la siguiente manera:

(referenciado en la Seccion 5.2.3) se re-
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= El tiempo Téﬁ%ine_emb (calculo de embeddings instruidos en linea) se excluyd, ya

que esta operacién no ocurriria si los embeddings estuvieran precalculados.

» Para simular el costo de acceder y recuperar 10s Nyetrieved €mbeddings precalcula-
e . (o) . <.

dos desde una base de datos, se utiliz6 el tiempo T}/ ;... (tiempo de recuperacion
inicial de los Nietrieved documentos) como un prozy conservador. Esta aproxi-
macién asume que recuperar Nietrieved vectores de embedding precalculados de
una base de datos tendria un costo comparable o inferior al de recuperar los

documentos originales.

. () . . ) .,
» Por lo tanto, el tiempo T} i quster PaT2 Efficient Speculative RAG se estimo
como la suma de los componentes que si ocurrirfan en un escenario con pre-

cOmputo:

T(C) ~ T(C)

embed-cluster Qsim

T e + TS

etrieve cluster-sample*

Esta aproximacioén, si bien no representa un pre-computo real, permitié evaluar el impacto
en la precision del sistema utilizando los embeddings conceptualmente correctos (aquellos
instruidos por ng) y, simultdneamente, obtener una estimacién razonable de la reduccién
de latencia al eliminar el costoso calculo en linea de los embeddings instruidos por la
consulta del usuario Q). (como lo hace el Speculative RAG original).

5.2.5. Fine-tuning de drafter

Siguiendo la metodologia propuesta por Wang et al. [78] para el entrenamiento del
Mpyatter, s€ procedié a realizar un finetuning. El objetivo era instruir al modelo para que,
dado un triplete (@, D) (pregunta, documentos de contexto), generara no solo la respuesta
A, sino también una justificacion E (rationale) que explicara como A se deriva de D. El
proceso de entrenamiento buscaba maximizar la verosimilitud Py, ... (4, E | Q, D).

Para este fin, se utilizaron los mismos datasets empleados en el finetuning del generador
de preguntas de KRAQ (ver Seccion 3.2.5): Dolly-v2 [13] y MusiQue [73]. Estos datasets
se procesaron para crear tripletas de entrenamiento (@, D, RespuestaConcatenada), donde
RespuestaConcatenada inclufa tanto la respuesta objetivo como una justificacion sinteti-
zada (siguiendo un esquema similar al descrito en Wang et al. [78], Apéndice G, para la
generacion de justificaciones, en este caso se uso el modelo GPT-40 para generar los ra-
cionales de entrenamiento). Se empled el modelo LLaMA 3.1-8B Instruct como base, y el
entrenamiento se realizoé con QLoRA bajo una configuracion de hiperparametros similar a
la detallada en la Seccion 3.2.5 para el generador de KRAQ.

El entrenamiento mostr6é una convergencia adecuada, como se observa en la curva de
pérdida sobre el conjunto de validacion (Figura 5.1).
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Pérdida durante el entrenamiento
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Fig. 5.1: Curva de pérdida en el conjunto de validacién durante el proceso de finetuning del modelo
MDrafter-

A pesar de la aparente convergencia durante el entrenamiento (Figura 5.1), la evaluacion
del rendimiento del Mpyager ajustado dentro del pipeline completo de Speculative RAG
arrojo resultados contraintuitivos. Como se muestra en la Tabla 5.1, el Drafter fine-tuneado
exhibi6 un rendimiento inferior en términos de la precision final del sistema en comparaciéon
con el uso directo del modelo LLaMA 3.1-8B Instruct (sin este fine-tuning especifico para
la tarea de Drafter), tanto en la métrica de Exact Match como en la Evaluaciéon con LLM
como Juez.

Tab. 5.1: Comparacion de la precision (EM % y LLM-as-judge % en TriviaQA) del sistema Specu-
lative RAG utilizando el modelo Mp,agter con y sin ajuste fino especifico para la tarea de

Drafter.
Variante de Mprafier EM LLM-as-judge
LLaMA 3.1-8B Instruct (sin fine-tuning) 77.6 82.0
LLaMA 3.1-8B Instruct (con fine-tuning) 71.6 76.0

Esta disminucién en el rendimiento a través de ambas métricas es significativa. Por
ejemplo, en EM, la precision cae de 77.6 % a 71.6 %, y en la evaluacion con LLM como Juez,
de 82.0 % a 76.0 %. Tal reduccion podria atribuirse a varios factores, incluyendo un posible
sobreajuste del modelo fine-tuneado a la forma especifica de los racionales sintetizados
durante la creacién del dataset de entrenamiento, lo que podria haber limitado su capacidad
de generalizacion o afectado negativamente su habilidad para generar la respuesta més
concisa o relevante. Otra posibilidad es que el proceso de fine-tuning con QLoRA, si bien
eficiente en recursos, no haya sido tan efectivo para esta tarea particular como lo habria
sido un fine-tuning completo de todos los pesos del modelo, como el que se realizd en el
trabajo original de Wang et al. [78].

Estrategia final: uso del modelo instruct con formato JSON

Dados los resultados de la Tabla 5.1, se tom6 la decision de no utilizar el modelo
Mpyratter finetuneado para esta tarea. En su lugar, se optoé por emplear el modelo LLaMA
3.1-8B Instruct (en su version cuantizada AWQ, como se describe en la Seccion 3.2.2) sin
ninguna modificacién adicional de fine-tuning para la funcién de Drafter.
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Para asegurar que la salida del modelo Drafter contuviera de manera diferenciada la
respuesta (o) y el racional (f;), y facilitar su posterior procesamiento para el calculo de
scores, se instruyé al modelo para que generara su salida en un formato JSON estructurado.
Esto se logr6 incorporando la siguiente instruccién al final del prompt enviado al Mprafter:

Your response must be a valid JSON object with the following format:

{’>’response’’: ’’your response here’’, ’’rationale’’: ’’your rationale here’’}

Esta aproximacién permite aprovechar las robustas capacidades de seguimiento de ins-
trucciones del modelo LLaMA 3.1-8B Instruct para obtener la informacién requerida en
un formato parseable, sin incurrir en los costes de un fine-tuning adicional que, en este
caso, no demostro ser beneficioso. La extraccion de o y B; se realiza entonces mediante el
parseo del objeto JSON devuelto.

El prompt final para los borradores puede encontrarse en la Seccion 7.5

5.2.6. Setup experimental para Efficient Speculative RAG

Para la evaluacion de Efficient Speculative RAG y su comparacion con el algoritmo
Speculative RAG original, se estableci6 una configuracién experimental base, compartien-
do varios componentes y parametros con los experimentos de Combined Retrieve RAG
(descritos en la Seccion 4.2.2).

Componentes del pipeline RAG:

Modelos de generacién y verificacién: Tanto para la generaciéon de borradores como
para la verificacién final de respuestas se utilizo el modelo 11ama3.1-8b-instruct en
su version cuantizada con AWQ. En el rol de Drafter (Mpyagter), este modelo fue res-
ponsable de producir multiples borradores y sus respectivos racionales, operando en
su version instruct, sin ajustes adicionales mediante fine-tuning. Las razones detrés
de esta eleccion se discuten en detalle en la Seccion 5.2.5. Por su parte, el mismo mo-
delo actudé como Verifier (Mvyerifier), encargado de evaluar dichos borradores. Ambos
modelos corriendo sobre un servidor vLLM. Los detalles técnicos de estas elecciones
se desarrollan en la Seccién 3.2.2.

Modelo de embeddings: Para el clustering inicial de documentos en el Speculative RAG
original (computo online de £(d; | @)) y para la estimacion de la precomputacion de
embeddings en Efficient Speculative RAG (computo offline de Epye(d;, Q]K ), se utilizo
el modelo de embeddings instruidos InBedder-RoBERTa [59], tal como proponen
Wang et al. [78].

Para la recuperacion inicial de documentos y la bisqueda de la pregunta de KRAQ
mas similar ( gm), se empled el modelo nomic-embed-text, gestionado mediante
QDrant, manteniendo la consistencia con otros médulos de la tesis (ver Seccion 3.2.2.
Corpus documental: Para la evaluacion de Efficient Speculative RAG (y su compara-
cion con nuestra implementacion del Speculative RAG original), se utilizé como base
de conocimiento el mismo corpus de documentos de evidencia E (aproximadamente
5 millones de tokens por dataset, como se describe en la Seccion 3.2.2) que fue proce-

sado previamente por el sistema KRAQ. Las preguntas de referencia (@) utilizadas
para poner a prueba estos sistemas RAG se seleccionaron de los datasets originales,
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asegurandose de que los documentos de evidencia necesarios para responderlas estu-
vieran contenidos dentro de este corpus F. El nimero de preguntas de referencia de
cada dataset utilizadas para la evaluacién especifica de Efficient Speculative
RAG (y su contraparte) fue el siguiente:

TriviaQA: 300 preguntas.
HotPotQA: 300 preguntas.
BioASQ: 500 preguntas.

PubHealth: 600 preguntas (afirmaciones).

Nuevamente, la seleccion de el ntimero de preguntas para estos experimentos se debid
a consideraciones pragmaticas sobre el tiempo disponible para la ejecucion y analisis,
buscando una evaluacién indicativa del rendimiento.

Parametros elegidos para la experimentacion

Para la evaluacién comparativa de Efficient Speculative RAG y el Speculative RAG
original, se seleccionaron hiperparametros especificos para cada dataset, buscando un equi-
librio entre la calidad de la respuesta y la eficiencia. Estos parametros clave, que definen
el comportamiento del componente de drafting y verificacion, son: Nyetrieved (nmero de
documentos recuperados), k£ (nimero de clisteres, que también corresponde al nimero
de documentos en cada subconjunto §;), y m (ntmero de subconjuntos de documentos o
borradores generados en paralelo). Los valores utilizados para cada dataset se detallan a
continuacion:

= BioASQ: Se configuré con Netrieved = 18 documentos iniciales, k¥ = 5 documentos
por subconjunto de borrador (y, por lo tanto, 5 clasteres), y se generaron m = 10
borradores.

= HotPotQA: Se emplearon Nyetrieved = 10 documentos, k£ = 4 documentos por sub-
conjunto, y m = 8 borradores.

s TriviaQA: Se utilizaron Nietrieved = 10 documentos, k = 2 documentos por subcon-
junto, y m = 5 borradores.

= PubHealth: Similar a TriviaQA, se configur6 con Nyetrieved = 10 documentos, k = 2
documentos por subconjunto, y m = 5 borradores.

Estos pardmetros se mantuvieron constantes para ambas variantes del algoritmo (original
y modificado) en cada dataset respectivo, con el fin de asegurar una comparacion justa
de su rendimiento en términos de precision y latencia. Los demas componentes, como los
modelos Mpratter ¥ Mverifier, ¢ mantuvieron como se describié en la Secciéon 5.2.6.

5.2.7. Resultados

Los resultados obtenidos para los cuatro datasets se resumen en la Tabla 5.2
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Tab. 5.2: Comparacion de rendimiento entre nuestra implementacion de Speculative RAG (deno-
minada "Original (V.Propia)”) y la variante Efficient Speculative RAG en términos de
Precision (Exact Match - EM y Evaluacion con LLM como Juez - LLM-as-judge, en %)
y Latencia Estimada (segundos).

Dataset EM (%) LLM-Juez (%) Latencia (s)
Original . Original . Original .
(V. Propia) Efficient (V. Propia) Efficient (V. Propia) Efficient
HotPotQA 44.3 44.0 48.3 49.0 3.01 2.93
TriviaQA 77.6 75.3 82.0 82.0 3.91 3.51
PubHealth 58.3 58.0 58.3 58.0 3.81 3.36
BioASQ 51.4 50.6 56.6 56.4 4.32 3.97

5.2.8. Analisis de resultados

Analisis de la precision de respuesta. El anélisis de la precision de las respuestas
generadas revela un panorama altamente competitivo para Efficient Speculative RAG, con
un rendimiento generalmente muy cercano al de nuestra implementacion del Speculative
RAG Original.

Al evaluar la correccion seméantica y factual mediante el LLM como Juez, se observa
que Efficient Speculative RAG obtiene un ligero incremento en la puntuacién para Hot-
PotQA (49.0 % frente al 48.3 % del Original), mientras que en TriviaQA ambas variantes
alcanzan un rendimiento idéntico del 82.0%. Para PubHealth, el Original presenta una
minima ventaja (58.3% vs. 58.0%), y en BioASQ, esta diferencia marginal a favor del
Original se mantiene (56.6 % vs. 56.4 %). Estos resultados, con diferencias minimas entre
ambas arquitecturas, sugieren que la aproximaciéon de utilizar la pregunta de KRAQ mas
similar ( §m> como proxy para la pregunta del usuario (@) en la seleccion de embeddings
precalculados es, en general, capaz de preservar la calidad seméantica de las respuestas a un
nivel practicamente indistinguible del método Original, que utiliza embeddings instruidos
directamente por Q.

En cuanto a la métrica de Exact Match, que evalta la coincidencia literal, nuestra
implementacion del Speculative RAG Original tiende a obtener puntuaciones ligeramente
superiores de manera consistente. Para HotPotQA, el Original es marginalmente superior
(44.3 % vs. 44.0%). En TriviaQA, la diferencia es mas notable, con el Original alcanzando
un 77.6 % frente al 75.3 % de Efficient Speculative RAG. En PubHealth, el Original también
lidera por un estrecho margen (58.3% vs. 58.0 %). Similarmente, en BioASQ (utilizando
el método de EM modificado descrito en la Seccion 4.2.3), el Original obtiene un 51.4 %
frente al 50.6 % de Efficient Speculative RAG. Esta tendencia podria indicar que el uso de
embeddings instruidos directamente por la pregunta del usuario ) guia el clustering de una
manera que favorece marginalmente la produccién de respuestas que coinciden de forma
més literal con las referencias, en comparacion con el uso de Qgi(m como proxy. No obstante,
es importante destacar que las diferencias en EM son generalmente pequenas, sugiriendo
que la pérdida de precision literal al optar por la variante Efficient es limitada.

Analisis de la latencia de inferencia. La principal motivacion detras de Efficient Spe-
culative RAG es la reducciéon de la latencia de inferencia. Los resultados presentados en la
Tabla 5.2 validan consistentemente esta hipétesis a través de todos los datasets evaluados.
Especificamente, la latencia con Efficient Speculative RAG se reduce de 3.01s a 2.93s en
HotPotQA, lo que representa una mejora del 2.66 %. Para TriviaQA, la latencia dismi-
nuye de 3.91s a 3.51s, marcando una reduccion del 10.23 %. En PubHealth, la mejora es
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aun mas pronunciada, con una caida de 3.81s a 3.36s, equivalente a una disminucién del
11.81 %. Finalmente, en BioASQ), la latencia desciende de 4.32s a 3.97s, lo que se traduce
en una mejora del 8.10%. Estas mejoras son atribuibles directamente a la eliminaciéon
del costoso célculo en linea de los embeddings instruidos £(d; | Q) para cada documento
recuperado, reemplazandolo por la recuperacion (estimada) de embeddings precalculados
Epre(ds, ffm) Este hallazgo es particularmente relevante para aplicaciones que requieren
respuestas rapidas y operan bajo restricciones de recursos computacionales.

Conclusién del analisis y balance precisiéon-eficiencia. En conjunto, Efficient Specu-
lative RAG se presenta como una alternativa optimizada y eficaz a nuestra implementacion
de Speculative RAG. Logra reducciones consistentes y, en algunos casos, significativas en
la latencia de inferencia en todos los datasets evaluados. Simultaneamente, mantiene un
nivel de precisién de respuesta que, si bien puede ser marginalmente inferior en la métrica
de Exact Match, es altamente competitivo y practicamente idéntico en términos de calidad
semantica evaluada por LLM como Juez. La ligera disminucién observada en las puntua-
ciones de EM puede considerarse un trade-off aceptable y, en muchos casos, despreciable,
frente a las significativas ganancias obtenidas en eficiencia. Esta reduccion de latencia, que
varia entre el 2.7 % y el 11.8 % segtn el dataset, puede ser crucial para la implementacion
de sistemas RAG en entornos de produccién o con alta demanda. La efectividad de Effi-
cient Speculative RAG subraya el potencial de utilizar preguntas representativas generadas
por KRAQ para optimizar operaciones costosas en pipelines de RAG complejos.

5.2.9. Estudios de ablacion

Para los estudios de ablacién presentados en esta seccidn, se utilizé la misma cantidad
de preguntas de referencia de los datasets que en los experimentos principales de Efficient
Speculative RAG, con el fin de asegurar la comparabilidad.

Impacto del modelo generador de preguntas de KRAQ

Para investigar la sensibilidad de Efficient Speculative RAG ala calidad de las preguntas
representativas QX utilizadas para la seleccion de embeddings precalculados, se realizo el
siguiente estudio de ablacién. Este estudio se centré en variar el método de generacién
de las preguntas de KRAQ, manteniendo el resto del pipeline de Efficient Speculative
RAG constante. Se evalu6 el impacto en la precision final del sistema utilizando el dataset
TriviaQA, mediante las métricas de Exact Match y Evaluaciéon con LLM como Juez.

Las variantes del generador de preguntas de KRAQ consideradas fueron las mismas
que en la evaluacion de KRAQ (ver Seccion 3.2.7):

1. Efficient (Fine-tuned KRAQ): Utiliza el modelo generador de preguntas de KRAQ
fine-tuneado especificamente para la tarea, como se describe en la Seccion 3.2.5. Esta
es la configuracion estandar de Efficient Speculative RAG en los resultados principa-
les.

2. Efficient (Instruct KRAQ): Utiliza el modelo LLaMA 3.1-8B Instruct (sin el fine-
tuning de KRAQ) para generar preguntas a partir de los resimenes comunitarios.

3. Efficient (Random KRAQ): Utiliza el baseline que genera preguntas a partir de
chunks seleccionados aleatoriamente del corpus (Seccion 3.2.3).
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Los resultados de precision en TriviaQQA para estas variantes se presentan en la Tabla 5.3.

Tab. 5.3: Impacto del método de generacion de preguntas de KRAQ en la precision (EM % y LLM-
as-judge %) de Efficient Speculative RAG en el dataset TriviaQA.
Variante del Generador de EM  LLM-as-judge
Preguntas de KRAQ

Efficient (Fine-tuned KRAQ)  75.33 82.00
Efficient (Random KRAQ) 73.33 81.00
Efficient (Instruct KRAQ) 73.00 77.00

Analisis. Los resultados del estudio de ablacién, presentados en la Tabla 5.3, indican que
la calidad y el método de generacion de las preguntas de KRAQ tienen un impacto directo
y significativo en el rendimiento de FEfficient Speculative RAG.

El uso del modelo de KRAQ con fine-tuning especifico (Efficient Fine-tuned KRAQ)
demuestra ser consistentemente superior, alcanzando la mayor precisiéon tanto en EM
(75.33 %) como en la evaluacion con LLM como Juez (82.00 %). Esto sugiere que las pregun-
tas mas relevantes permiten una selecciéon mas adecuada de los embeddings precalculados
Epre(d;, ng) Una Q;{m de mayor calidad, que se asemeja méas en intenciéon y contenido
a la pregunta real del usuario @), resulta en un clustering de documentos més pertinente
para la pregunta original. Esta mejor agrupaciéon, a su vez, impacta positivamente en la
calidad de los borradores generados y, consecuentemente, en la precisién de la respuesta
final.

Cuando se utilizan preguntas generadas por el método Random KRAQ (Efficient
Random KRAQ), que se derivan de chunks aleatorios, la precision en EM disminuye a
73.33% y en LLM-Juez a 81.00%. Aunque estas preguntas provienen directamente del
corpus, carecen del andlisis estructural y la sintesis temética que KRAQ introduce.

La variante que utiliza el modelo Instruct KRAQ (Efficient Instruct KRAQ), es decir,
el modelo LLaMA 3.1-8B Instruct aplicado a los resimenes comunitarios de GraphRAG
sin el fine-tuning especifico de KRAQ, muestra el rendimiento més bajo: 73.00 % en EM y
77.00% en LLM-Juez. Esto subraya que, si bien los resiimenes comunitarios proporcionan
una buena base, el modelo de lenguaje necesita ser especificamente adaptado para transfor-
mar estos resimenes en preguntas que sean efectivas para guiar la seleccién de embeddings
en el contexto de Efficient Speculative RAG.

Impacto del nimero de documentos recuperados en la latencia

Para investigar méas a fondo el beneficio en latencia de Efficient Speculative RAG,
especialmente en escenarios donde el costo del calculo de embeddings instruidos en linea
podria ser méas pronunciado, se realizé un estudio de ablaciéon adicional. En este estudio, se
vari6 el nimero de documentos recuperados inicialmente (Nyetrieved) antes de la etapa de
clustering, mientras se mantenian fijos otros parametros del algoritmo Speculative RAG.

Especificamente, para el dataset HotPotQA, se fijo el ntimero de clasteres (y, por ende,
el namero de documentos por subconjunto de borrador) en & = 3 y el namero de borra-
dores generados en m = 8. Luego, se comparo la latencia de inferencia estimada (segin
la Ecuacién 5.5) entre nuestra implementacion del Speculative RAG Original y la variante
Efficient Speculative RAG para diferentes valores de Nyetrieved € {10, 15,20}.



82 5. Efficient Speculative RAG

La hipoétesis era que, al aumentar Nyetrieved, €l costo de calcular los embeddings instrui-
dos en linea para el Speculative RAG Original se incrementaria de mayor manera que el
costo (estimado) de recuperar un mayor ntimero de embeddings precalculados en Efficient
Speculative RAG, resultando en una mayor diferencia de tiempo ahorrado a favor de la
variante eficiente. Los resultados de latencia obtenidos se presentan en la Figura 5.2.

Latencia Original (V. Propia)
3.20} —® Latencia Efficient
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Fig. 5.2: Impacto del ntimero de documentos recuperados inicialmente (Nyetrieved) € la latencia.

Analisis de los resultados del estudio de ablacion. Los resultados presentados en la
figura 5.2 confirman la hipotesis planteada. A medida que aumenta el nimero de docu-
mentos recuperados inicialmente (Nyetrieved), la ventaja en latencia de Efficient Speculative
RAG sobre el Speculative RAG Original se vuelve méas pronunciada:

= Con Nyetrieved = 10, la reduccion de latencia es del 2.7 %..
= Al aumentar a Nyetrieved = 19, la reduccién de latencia se incrementa al 3.5 %.

s Con Nyetrieved = 20, la variante eficiente logra una reduccion de latencia del 7.4 %.
Notablemente, la latencia de Efficient Speculative RAG se mantiene practicamente
constante (2.93s a 2.99s) incluso al duplicar el ntimero de documentos iniciales de
10 a 20, mientras que la latencia del Speculative RAG Original aumenta de 3.01s a
3.23s.

Este comportamiento es el esperado: el costo principal para Efficient Speculative RAG en
la etapa de Te(gbed_duster (después de la seleccion de Qii(m) radica en la recuperaciéon de los
embeddings precalculados y el subsiguiente clustering y muestreo. Si bien la recuperacién
de méas embeddings precalculados tiene un costo, este es presumiblemente menor y més
constante que el costo de generar en linea un mayor niimero de embeddings instruidos con
un modelo como InBedder-RoBERTa, como debe hacer el Speculative RAG Original.
Este estudio de ablacién marca la escalabilidad de la ventaja en latencia de Efficient
Speculative RAG, particularmente en escenarios donde se podria considerar recuperar un
conjunto inicial mas grande de documentos con el fin de capturar una mayor diversidad de
perspectivas. La capacidad de Efficient Speculative RAG de mantener una latencia relati-

vamente estable en la etapa de T © al variar Nyetrieved €8 Una ventaja significativa.

embed-cluster



6. CONCLUSIONES GENERALES

6.1. Conclusiones

En la presente tesis se investigo y desarrollé una nueva metodologia denominada KRAQ
(Knowledge-graph Representative Automatic Questions), con el principal objetivo de opti-
mizar los sistemas RAG. Este esfuerzo se origind como respuesta a las limitaciones reco-
nocidas de los LLMs, como su conocimiento estatico, su propensiéon a las alucinaciones y
su sesgo de posicion, asi como a los desafios en los sistemas RAG, que incluyen la consi-
derable carga computacional y la frecuente recuperaciéon de informacién con alta similitud
superficial pero baja diversidad semantica.

La propuesta central de KRAQ se articul6 en torno a la hipétesis de que un conjunto
de preguntas representativas de un corpus, generado de manera informada y estructurada,
podria actuar como un activo para mejorar los pipelines de RAG. Para ello, KRAQ se
disend para capturar la estructura seméntica de un corpus documental mediante la cons-
truccién de un grafo de conocimiento. Sobre este grafo, se aplicaron algoritmos de deteccion
de comunidades para identificar agrupaciones tematicas cohesivas, a partir de las cuales
se generaron resumenes textuales. El componente innovador de KRAQ radica en la trans-
formacion de estos restimenes comunitarios en un conjunto de preguntas representativas,
utilizando para ello un modelo de lenguaje (fine-tuneado).

La evaluacion experimental de KRAQ demostr6 su eficacia. Al comparar las pregun-
tas generadas con aquellas de referencia en datasets estandar como TriviaQA, HotPotQA,
BioASQ y PubHealth, se constato que KRAQ alcanzo niveles de relevancia seméantica (me-
didos con Relevance y Relevance@r, metricas basadas en BERTScore) significativamente
superiores a los de un baseline que genera preguntas a partir de fragmentos aleatorios del
corpus. Es crucial destacar que KRAQ, con su modelo fine-tuned, también superd consis-
tentemente a una variante que utilizaba el mismo pipeline de restimenes comunitarios pero
empleaba un modelo de lenguaje instruct-tuneado sin ajuste especifico para la generacién
de preguntas. Esto subraya el valor del fine-tuning para alinear el modelo generador con
la tarea de producir preguntas teméticamente representativas a partir de los restimenes.

Las contribuciones practicas de esta tesis se materializaron a través de dos aplicaciones
directas de las preguntas generadas por KRAQ, ambas orientadas a mitigar limitaciones
especificas de los sistemas RAG:

1. Combined Retrieve RAG: Se propuso un algoritmo de recuperacién que enrique-
ce la consulta original del usuario con preguntas similares generadas por KRAQ, con
el fin de diversificar el conjunto de documentos recuperados. Los experimentos en
esta linea mostraron mejoras consistentes en la precisiéon de las respuestas. Especifi-
camente, se observaron incrementos de hasta un 3% en la métrica de Exact Match
y mejoras generalizadas en la evaluacion semantica mediante LLM como Juez. Estos
resultados sugieren que la diversificacién contextual, guiada por preguntas tematica-
mente relevantes y estructuralmente derivadas, beneficia la calidad de la generacién
final.

2. Efficient Speculative RAG: Se desarrolld una optimizaciéon para el framework
Speculative RAG, donde las preguntas de KRAQ se emplearon para permitir el pre-
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computo de los embeddings instruidos, un componente que representa un cuello de
botella computacional en el algoritmo original. Las pruebas experimentales indica-
ron una reduccion notable en la latencia de inferencia, alcanzando hasta un 10 % de
disminuciéon, sin una disminucién significativa en la calidad de las respuestas. Es-
te hallazgo es prometedor para la implementaciéon de sistemas RAG avanzados en
entornos con alta demanda.

Los estudios de ablacién realizados reforzaron la tesis de que la calidad intrinseca de
las preguntas generadas por KRAQ y la especificidad del fine-tuning del modelo generador
son determinantes para el éxito de las optimizaciones propuestas.

En sintesis, esta tesis aporta evidencia empirica de que la integracién de grafos de
conocimiento como base para una generacién automadtica de preguntas representativas
constituye una estrategia efectiva y prometedora. KRAQ no solo se presenta como una
herramienta para la condensacién y representaciéon del conocimiento de un corpus, sino
que se establece como un componente funcional capaz de mejorar el rendimiento de los
sistemas RAG, abriendo nuevas vias hacia la construccion de sistemas RAG mas precisos
y eficientes..

6.2. Trabajos futuros

Los resultados y la metodologia desarrollada en esta tesis abren diversas lineas de inves-
tigacion y desarrollo futuro que podrian expandir y refinar las contribuciones presentadas:

1. Optimizaciéon de KRAQ:

= Explorar el uso de los "findings” o afirmaciones detalladas generadas por Graph-
RAG (ademas de los resimenes comunitarios) y de otras caracteristicas del grafo
de conocimiento (como las propias entidades de una comunidad) como entrada
para el modelo generador de preguntas, buscando preguntas mas especificas.

= Investigar el impacto de diferentes algoritmos de deteccion de comunidades en
la calidad y representatividad de las preguntas finales.

= Experimentar con modelos de lenguaje de mayor capacidad para la tarea de
generacion de preguntas a partir de resimenes.

2. Mejoras en Combined Retrieve RAG:

= Desarrollar estrategias mas sofisticadas para la seleccion y ponderacion de las
preguntas de KRAQ en la recuperaciéon combinada, por ejemplo, adaptando
dindmicamente el numero de preguntas (n) o la proporcion («) en funcion de la
complejidad o ambigiiedad de la consulta del usuario.

= Integrar mecanismos de re-ranking de los documentos recuperados que consi-
deren tanto la similitud con la pregunta original como con las preguntas de
KRAQ.

» Investigar como podria utilizarse la jerarquia de las preguntas (en relacion al
nivel de la comunidad con la que fueron generadas) para optimizar el RAG tra-
dicional.
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3. Optimizacion y expansion de Efficient Speculative RAG:

= [nvestigar estrategias para la optimizaciéon del pre-computo de embeddings ins-
truidos. Esto incluye validar empiricamente la viabilidad de un pre-cémputo
selectivo, donde solo se generen embeddings instruidos por una pregunta de
KRAQ (QJK ) para un subconjunto de documentos del corpus que sean semanti-
camente més afines a QJK (e.g., los M mas relevantes). El objetivo seria reducir
drasticamente el costo del pre-computo sin afectar negativamente la calidad del
clustering y la respuesta final.

4. Nuevas aplicaciones de las preguntas de KRAQ:

= Utilizar el conjunto de preguntas de KRAQ como base para la generacién au-
tomatica de datasets de entrenamiento para sistemas de QA especificos a un
corpus.

= Desarrollar herramientas de exploraciéon de corpus donde las preguntas de KRAQ
actiien como puntos de entrada o sugerencias para la navegaciéon temética.



7. APENDICE

7.1. Prompt para la Sintesis de Restimenes Comunitarios (Etapa g)

El siguiente prompt se utilizé con un modelo LLM (GPT-40) para generar resimenes
teméaticos R a partir de una pregunta de referencia () y un conjunto de evidencia E. El
objetivo era obtener un resumen del contenido de E sin revelar Q.

Given this evidence and knowing that we want to generate a question about
{target_question}, create a community-style summary that:

Describes the main group, organization, or topic that connects the entities
Lists key members, figures, or elements in the community

Emphasizes relationships and connections between these elements

IMPORTANT: Do not reference or hint at the specific question that will be asked
Make the summary concise, maximum 5 sentences.

D O N

Follow this style:

Example: ’’This community centers around the Order of the Phoenix, a secret
organization in the Harry Potter series dedicated to combating dark forces,
particularly Voldemort and his followers. Key members include Harry Potter,
Kingsley Shacklebolt, Alastor Moody, and Nymphadora Tonks. The relationships
among these characters highlight their collaborative efforts against dark magic,
notable events such as battles against the Death Eaters, and the complexities

of their interactions, including issues of trust and loyalty.’’

For the given evidence, create a similar community-focused summary that
describes the entities and their relationships without revealing the
specific question that will be asked:

Evidence:
{evidence}

Donde {target_question} era reemplazado por la pregunta () y {evidence} por el texto
de evidencia E.

7.2. Prompt para la Generacion de Preguntas (Modelo fy)

Este prompt se utiliz6 como plantilla para el fine-tuning del modelo LLaMA 3.1-8B
Instruct y para la inferencia. El objetivo es generar una pregunta natural (e, a partir de
un resumen comunitario R.

Given this summary of a document collection, generate a natural question that a
person might ask when looking for this information. The question should be:

- Simple and straightforward

- Written in conversational language

86
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- Focused on the main topic or event
- Something a real person would ask when searching for information

Now generate a question for this summary:
{summary}

Durante el fine-tuning, {summary} era reemplazado por el resumen R generado en la etapa
anterior, y la respuesta esperada (del rol assistant) era la pregunta original @. Para la
inferencia, solo se proporciona el prompt con el resumen, y el modelo genera la pregunta.
La estructura de datos para el entrenamiento seguia el formato:

{
> messages’’: [
{’’role’’: ’’user’’, ’’content’’: ’’PROMPT_CON_SUMMARY_INSERTADO’’},
{’’role’’: ’’assistant’’, ’’content’’: ’’PREGUNTA_OBJETIVO’’}
]
}

7.3. Prompt para la Generaciéon de Preguntas del Baseline de KRAQ

El siguiente prompt se utiliz6 con un LLM para generar una pregunta a partir de la
concatenacion de m fragmentos (chunks) de texto seleccionados aleatoriamente del cor-
pus. Este proceso constituye el baseline para la evaluaciéon de la calidad de las preguntas
generadas por KRAQ, como se describe en la Seccion 3.2.3 y el Algoritmo 3.

Given these random fragments, generate a natural, concise question that someone
might ask about the themes or topics present in these passages. The question
should:

- Be short and to the point

- Focus on a common theme or interesting connection between the fragments

- Be something a real person would naturally ask

- Not be too complex or academic

Fragments:
{combined_content}

Generate only ONE concise question:

Donde {combined_content} era reemplazado por el texto resultante de la concatenacion
de los m chunks aleatorios. El objetivo era que el LLM generara una tnica pregunta concisa
basada en el contenido agregado de estos fragmentos.

7.4. Prompt para la Generaciéon de Respuestas en Sistemas RAG

El siguiente prompt base se utiliz6 para instruir al LLM generador (Llama-3.1-8B-
Instruct en esta tesis) en la etapa final de los diferentes pipelines RAG evaluados (e.g., RAG
Tradicional, Combined Retrieve RAG, y como modelo Myerifier © MpDrafter cOn adaptaciones
en Speculative RAG). El objetivo era que el LLM generara una respuesta a la consulta del
usuario, utilizando el contexto recuperado como evidencia.
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Below is an instruction that describes a task. Write a response using the
evidence provided for it and state your explanation supporting your response.

### Evidence:
{context}

### Instruction:
{query?}

Donde los placeholders se reemplazaban de la siguiente manera:

= {context}: Se insertaba el conjunto de documentos o fragmentos de texto D que
fueron recuperados por el componente retriever del sistema RAG. Estos documentos
se concatenaban para formar un tinico bloque de texto contextual.

» {query}: Se insertaba la pregunta original ) formulada por el usuario (o la pregunta
de referencia del dataset en el contexto experimental).

Se esperaba que el LLM utilizara la "Evidence” (el contexto recuperado) para responder a la
"Instruction” (la consulta), y la instruccion adicional de "state your explanation supporting
your response”’ tenfa como objetivo fomentar respuestas mas fundamentadas, aunque el
analisis principal de esta tesis se centrd en la respuesta directa y no en la calidad de la
explicacién generada, salvo en el contexto especifico del calculo de scores para Speculative
RAG donde los "racionales” juegan un papel. La respuesta directa del modelo a la consulta
{query} se consider6 como Agen.

7.5. Prompt para la Generacion de Borradores (Mpyafier) €n Speculative
RAG

El siguiente prompt se utilizo para instruir al modelo Mpyafter (Llama-3.1-8B-Instruct
en esta tesis, como se detalla en la Seccion 5.2.5) dentro del framework Speculative RAG.
El objetivo era que el modelo, dada una instrucciéon (pregunta) y un conjunto de evidencia
(subconjunto de documentos d;), generara tanto una respuesta candidata (a;) como una
justificacion o racional (;) que la respaldara. La salida se solicito en formato JSON para
facilitar su posterior procesamiento (Explicacion de la razén de esto en la Seccion 5.2.5).

Response to the instruction. Also provide a concise rationale that justifies the
response.

### Instruction:
{instruction}

### Evidence:
{evidence}

Your response must be a valid JSON object with the following format:
{{’’response’’: ’’your response here’’, ’’rationale’’: ’’your rationale here’’}}

Donde los placeholders se reemplazaban de la siguiente manera:
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» {instruction}: Se insertaba la pregunta original del usuario @ (o la pregunta de
referencia del dataset en el contexto experimental).

» {evidence}: Se insertaba el subconjunto de documentos d; (muestreado a partir de
los clusteres de documentos recuperados) que debia servir como base para la respuesta
y la justificacion.

El modelo Mpyafter debia generar un objeto JSON que contuviera dos claves: *’response’’
(mapeada a o) y “’rationale’” (mapeada a ;). Esta estructura permitia una extraccion
sencilla de ambos componentes para su uso en el calculo de los scores de Speculative RAG.

7.6. Prompt para el Modelo Verificador (Mveriier) €n Speculative RAG

En el framework Speculative RAG (tanto en la version original implementada como en
Efficient Speculative RAG), el modelo verificador (Myerifier) juega un papel crucial en la
evaluacion de los borradores de respuesta y sus justificaciones (racionales) generados por
el modelo Mpragier- Este proceso de verificacion contribuye al calculo del score p?elf'reﬂe“
(ver Seccion 2.2.3).

El siguiente prompt se utilizo para instruir al modelo Myeifier (Llama-3.1-8B-Instruct

en esta tesis):

Instruction: {instruction}

Response: {response}

Rationale: {rationale}

Is the rationale good enough to support the answer?

You must respond with only a single word: ’’Yes’’ or ’’No’’.
Do not include any explanation or additional text.

Donde los placeholders se reemplazaban de la siguiente manera:

» {instruction}: Se insertaba la pregunta original del usuario @ (o la pregunta de
referencia del dataset).

= {response}: Se insertaba el borrador de respuesta «; generado por el modelo Mpyafter-

» {rationale}: Se insertaba la justificacion o racional 3; generado por el modelo
Mpratter Para acompanar a ;.

Se esperaba que el modelo Myerifier €valuara si el {rationale} proporcionado era un so-
porte adecuado y suficiente para la {response} en el contexto de la {instruction}. La
respuesta del Mvyerifier (restringida a "Yes” o "No”) y las log-probabilidades asociadas a es-
ta respuesta se utilizaban luego para calcular el componente pj-elf'reﬁeCt del score final del
borrador.
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7.7. Prompt para la Evaluacién con LLM como Juez

Para la evaluacion de la calidad seméantica y factual de las respuestas generadas por
los sistemas RAG, se empled un LLM como juez. El siguiente prompt fue proporcionado
al LLM (Llama-3.1-8B-Instruct en esta tesis) para cada instancia de evaluaciéon, como se
describe en la Secciéon 4.2.1.

You are an expert evaluator for question answering systems. Your task is to
determine if the generated answer correctly responds to the question according
to the reference answer.

Question: {question}
Generated Answer: {generated_answer}
Reference Answer: {reference_answer}

The reference answer represents the truth. The generated answer must match the
meaning of the reference answer to be considered correct. If the generated
answer is more specific but the core meaning is the same, it is also
considered correct.

Respond with ONLY a single digit:
1 - CORRECT:
0 - INCORRECT:

Your verdict (just the digit 1 or 0):

Donde los placeholders se reemplazaban de la siguiente manera:
= {question}: Se insertaba el texto de la pregunta de referencia () del dataset.

» {generated_answer}: Se insertaba el texto de la respuesta Agen, producida por el
sistema RAG evaluado.

» {reference_answer}: Se insertaba el texto de la respuesta de referencia A del data-
set.

El LLM-Juez debia responder tinicamente con el digito ”1” si consideraba que la respuesta
generada era correcta y semanticamente equivalente a la respuesta de referencia, o con ”0”
en caso contrario. La proporciéon de respuestas ’1” sobre el total de instancias evaluadas
constituyé la puntuacion de la métrica LLM-como-Juez.
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