%s\“w e 'BUE’VOJ'
& FACULTAD

S e
CIENCIAS EXACTAS
Y NATURALES

UNIVERSIDAD DE BUENOS AIRES
FAacuLTAD DE CIENCIAS EXACTAS Y NATURALES

Ajedrezzinni Latentinni: autoencoders
para interpretar el espacio latente del
ajedrez

Tesis de Licenciatura en Ciencias de Datos

Julian Garbulsky

Director: Juan Pablo Pinasco
Buenos Aires, 2025

AJEDREZZINNI LATENTINNI: AUTOENCODERS PARA
INTERPRETAR EL ESPACIO LATENTE DEL AJEDREZ

En este trabajo exploramos representaciones comprimidas de posiciones de ajedrez me-
diante autoencoders, una clase de redes neuronales no supervisadas. A partir de una base
de datos publica de partidas de ajedrez, filtramos posiciones jugadas entre jugadores de
alto nivel y las representamos en formato binario (usando una variante del bitboard). En-
trenamos un autoencoder con el objetivo de reconstruir estas posiciones, y medimos la
calidad de la reconstrucciéon tanto con el error cuadratico medio como con una métrica
especifica del dominio que contabiliza cuantas casillas del tablero fueron mal reconstruidas.

Para estudiar la interpretabilidad de las representaciones latentes, aplicamos anélisis de
componentes principales (PCA) y visualizamos cémo las aperturas de ajedrez, asi como
ciertas estructuras como el enroque y los peones centrales, se reflejan en las primeras
componentes principales. Encontramos que algunas de estas caracteristicas estratégicas o
posicionales se correlacionan con direcciones particulares del espacio latente.

Finalmente, evaluamos la robustez del autoencoder aplicdndolo a posiciones signifi-
cativamente distintas a las del entrenamiento, como las jugadas por principiantes o las
generadas artificialmente mediante simetrias. En ambos casos, observamos un desempeno
de reconstruccién menor, lo que sugiere que el modelo captura regularidades propias de
partidas de nivel intermedio a alto.

Palabras claves: Ajedrez, Autoencoders, Aprendizaje no supervisado, Representaciones
latentes, PCA, Interpretabilidad, Reconstruccion.

AJEDREZZINNI LATENTINNI: AUTOENCODERS FOR
INTERPRETING THE LATENT SPACE OF CHESS

In this work, we explore compressed vector representations of chess positions using auto-
encoders, a class of unsupervised neural networks. Our goal is twofold: to obtain a compact
encoding that captures the essential structure of a chess position, and to understand to
what extent strategic or positional features are preserved in the latent space.

We begin by preprocessing a public Lichess dataset, filtering for standard-rated games
with a minimum time control and players rated above 2100. Chess positions are encoded
using a variant of the standard bitboard representation: we represent each square of the
board using a one-hot encoding over 13 channels—one for each of the 12 piece types and
one additional channel for empty squares. This results in a 832-dimensional binary vector
for each position. This representation has the advantage of allowing direct interpretation
of the model’s outputs, which are real-valued, by choosing the most activated channel for
each square.

We train an autoencoder on a large sample of midgame positions to minimize recons-
truction error. The encoder compresses the input vectors into a lower-dimensional latent
representation, while the decoder attempts to reconstruct the original position. The mo-
del’s performance is evaluated using both the mean squared error and a domain-specific
metric based on the number of incorrectly reconstructed squares.

To study the structure of the latent space, we apply Principal Component Analysis
(PCA) to the compressed vectors and visualize the projections along the first components.
We observe that chess openings, castling maneuvers, and pawn formations often correspond
to distinguishable regions in the PCA plane, suggesting that the autoencoder has captured
meaningful chess regularities.

We further examine the model’s robustness by testing it on positions drawn from out-
of-distribution sources. These include positions from beginner-level games and artificially
transformed positions obtained via the board symmetry of vertical reflections. In both set-
tings, the model’s reconstruction error increases, reinforcing the idea that the autoencoder
learns typical patterns from high level chess and not simply the position of each single
piece.

In summary, we demonstrate that autoencoders can learn to represent and reconstruct
chess positions with high accuracy while preserving structural features in a low-dimensional
space, and we highlight how visualization and domain-specific decoding choices can en-
hance interpretability in unsupervised settings.

Keywords: Chess, Autoencoders, Unsupervised learning, Latent space, PCA, Interpreta-
bility, Reconstruction, Out-of-distribution analysis, One-hot encoding.

111

AGRADECIMIENTOS

El primer agradecimiento es para todos. El otro dia en la defensa de tesis y en los poste-
riores sanguchitos la pasé genial con todos ustedes. Disfruté mucho también el proceso de
pensar qué poner en las diapositivas para hacer reir a cada grupo de personas, con algunas
referencias escondidas involucradas. Sigo sin poder creer cuantos éramos, y me quedé claro
en el momento en que fui a buscar una porcién de chocotorta y ya habian desaparecido
las dos.

También a los muchos de ustedes que me ayudaron a preparar la presentacion escu-
chando ensayos y aportando ideas buenisimas sobre como contar las cosas que se hicieron
en la tesis: Bruno Glecer, Massi, Pili y Nahue, Conejillos (Mateo, Lu, Maggy, Marti, Chia-
ri, Valen, Pedro Raigorodsky, Cami Pinat, Coni), Outer Wilds (Adro, Ilu, mi viejo), Bruno
Giordano, Ale, Joaco Bermejo y obviamente Juan Pablo.

Sigo con la persona mas importante del proceso de la tesis: Juan Pablo Pinasco. No
solo por coparse desde el primer dia a ser mi director sino también por lo bien que la
pasé en el medio pensando ideas, manijeando posibles proyectos y yéndonos por las ramas
charlando de otras cosas que nos hicieron reir. Con él nos habiamos conocido en la facu
varios anos atras y en el medio ya habiamos tirado ideas de posibles proyectos que combinen
aprendizaje automatico y ajedrez. Me encanté finalmente haberlo hecho juntos.

El siguiente es para toda la familia. Hay miles de cosas para decir, pero hoy voy a ir
con algunas bien especificas. A mi viejo por hacer que me guste mucho el ajedrez desde
chiquito. A mi vieja por haberme ayudado a decorar las chocotortas que comimos después
de la defensa como las figuras 4.12 y 4.13. A Lele por ser la persona mas creativa del
planeta a la hora de hacerme reir, ademés de por decidir escuchar mi sabio consejo sobre
la direccién en la que tenia que girar realmente la tuerca si queriamos cambiar la rueda rota
del auto yendo a Tandil. Del lado de mi vieja, a Abu y el Tio Loco por ser las personas
que més llenan mi vida de Cindor y de anécdotas delirantes. A Vale, Martin, Ludmi,
Joan y Carola por haber introducido el tereré en mi vida y ser los directos responsables
de la cantidad de litros que tomé desde que empecé la facu, y en esta ocasion a Ludmi
especialmente por haberme ayudado a elegir el titulo de la tesis. Y del lado de mi viejo a
todos por lo bien que me la hacen pasar en los viajes y lo mucho que me hacen reir todos
los dias (hay una referencia escondida en esta tesis para que busquen ustedes). Pero esta
vez a algunos especialmente. A Guidin por ser el primero que me hablé de la nueva carrera
de Ciencia de Datos que estaba por aparecer. A Tein por pasar en muy poco tiempo de
ser el primo al que le enseno ajedrez a ser el primo que me ensena ajedrez y por haber
tirado ideas copadas para la tesis desde el principio. Y a Cande por subirme la heladera.

A los Avetta no solo por venirse a Buenos Aires especialmente para la defensa, sino
también por las ganas con las que siempre quieren recibirme en San Nicolds, que toquemos
temas de Coldplay en la guitarra y que les diga qué otra cosa necesito que se pueda resolver
con la méquina de coser.

A las peronas (de la facu y de afuera) con las que mas compartimos momentos o temas
que nos apasionan: A CMC por ser mis amigos de toda la vida. A Ale por la infinidad
de proyectos y actividades que hicimos juntos desde muy chiquitos. A Mati Bergerman

\%

por las ganas que tiene siempre de conocer todos los detalles de como funcionan las cosas
y preguntar por lo que estoy haciendo hasta entenderlo en profundidad y aportar ideas
geniales. A Valen por compartir la pasién de conocer personas que hagan cosas que nos
dan mucha intriga y llenarlos a preguntas, en un episodio de Desayuno Podcast o en la
vida en general. A Bruno Glecer por ser la persona que me hace sentir que charlando
con él se puede entender cualquier cosa, y también por ser la persona con la que no
podemos hacernos chistes porque a esta altura ya se nos ocurren los mismos remates bien
especificos al mismo tiempo. A Massi porque al dia de hoy sigo sin entender cémo hizo,
porque con los anos nunca me dejé de pasar de aprender algo de matemética (cada vez
més avanzado) y en algin momento darme cuenta de “che esto es lo que me habia contado
Massi cuando estabamos haciendo el CBC”, y también es la persona con la que cuando
hago matemadtica mejor me hace entender en castellano qué es conceptualmente lo que
estamos haciendo. A Julil por ser la que me hace entender las ideas mas abstractas de la
matematica manejandolas como si fueran de lo méas cotidiano, y también por ser la tinica
persona con la que nos refmos tanto del humor mds absurdo (ver Figura 0.1).

| ...el cultivo estaba

lleno de papas- 4
empapadoocoooo
‘u—-._.,_,d_F}//L\ pap:

—

Fig. 0.1: si no te refste no sos Julil.

A Cami Mildiner por pasar de ser la persona a la que le cuento en qué consiste la carrera
de Matemaética a ser la persona a través de quien conozco a mas otras personas de la facu,
por los niveles de manija que maneja para organizar actividades sociales como Fulbo y
Conitos. Al igual que el Chino Cribioli en su tesis, agradecimiento para él y Bruno Giordano
por la manera tan Unica en la que nos hacemos reir. Son ellos los que estando juntos en
Cérdoba me hicieron conocer muchas de las estructuras de humor que ahora me divierten
todos los dias (pero bueno, igual me lo tengo que fumar). A Pedro Raigorodsky por los
altos niveles en sangre que tiene de pasion por la matematica, y por ser con quien contarnos
de un proyecto que tenemos se puede transformar automaticamente en una videollamada
todas las semanas (como lo fue con “BienAlI!”). A Gabi Sac porque a pesar de ser el chico
con el que en ExpC2014 casi no llegué a cruzar una palabra, después nos fuimos enterando
de cada vez més cosas que compartiamos (OMA, electrénica, AwesomeMath, la carrera,
etc.) hasta terminar siendo él con quien fundamos el Taller de Ingenio, haciéndome cumplir
por primera vez mi suenio de dar un taller de matematica recreativa. A Mati Saucedo por
ser uno de los més directos responsables de que haya terminado estudiando en Exactas,
contagiando a su manera muy unica su pasion por resolver problemas como profe en la
secundaria, en Exactas y como amigo, y porque al dia de hoy cada vez que lo escucho
explicar algo, su manera de hacerlo sigue siendo siempre més clarisima de lo que puedo

recordar. A Juampi De Rasis por ser de mis amigos que més me orientaron cuando entré a
la carrera de Matematica, siempre adelantdndome lo méas geniales que se ponian las cosas
cuando uno sigue generalizando. A Dina por coparse tanto a hacer experimentos de fisica
desde que nos conocemos, ya sea haciendo malabares dentro de un avién acelerando en la
pista de despegue o juntdndonos a hacer un espejo parabdlico para hacer un radiotelescopio
aunque solo termine siendo una maquina de encandilarnos con el sol. A Juli3 por convencer
a Bruno de que el Outer Wilds si me iba a gustar a pesar de ser ficcion, y ponerlo en practica
juntdndonos los tres regularmente para que me vieran jugar y en el medio yo no pueda
dejar de pensar en el juego por la intriga con la que me quedaba. A Diego Ferndndez
Slezak porque desde que lo conoci cuando estaba en el CBC que siempre tiene ganas de
contarme aplicaciones copadas de las cosas que él conoce y que yo estoy por aprender,
y por coparse a ser mi tutor de la carrera de Datos y la paciencia con la que me ayuda
a entender qué tramites tengo que hacer cuando. A Dylan Fridman por compartir desde
hace tanto la manera tan estratégica de pensar cudl es el préximo paso en la investigacién
que estemos haciendo (por ejemplo Proyecto Cuadrado) o cudl es el préximo acorde en
la cancién que estemos componiendo. A Santi Aranguri por las ganas que tiene siempre
de pensar las cosas. A Lauti Borrovinsky por las juntadas para preparar charlas y tocar
musica.

A la gente que no puedo cruzarme en el pasillo y salir sin aprender algo nuevo de
matemdtica o de datos: Chanu (con algin problemén y su respectiva solucién elegante
involucrados), Fran Valdés (con alguna sugerencia de en qué orden atipico cursar las ma-
terias involucrada), Juli4 (con algin dato de Eurovisién involucrado), Zenén (con topologia
y memes involucrados), Rocco (con ideas de estadistica y maneras de organizarse bien en
la vida involucradas), Lucho Cassini (con principios filoséficos involucrados, y probable-
mente preparar otro final juntos), Lula Chechic (con neurociencia y tocar un temén de
Miranda en la guitarra involucrados), Aye y Lucas Vitali (con divulgacién, grafos y comi-
da involucrados), Gasti Zabala (con datos curiosos sobre lo que sea involucrados), Pollo
(con tremendas notas en la guitarra involucradas), Pedro Sanchez Terraf (con conjuntos
y memes bizarros involucrados).

Seccién Futbol: A todos los que son parte del Fulbo de los findes en el poli y a todo
el equipo de Conitos FC, por lo bien que me la hacen pasar pateando la pelota, siendo de
los mejores ejemplos de por qué a la facu me gusta llamarla “El Club”. Y ya que estamos
en tema, al Dibu por la atajada mds importante de nuestra generacion.

A los que me ayudaron especialmente con la tesis: Al pibe random que me mando
un mensaje por Instagram sin conocernos pero resulté ser Feli Marelli, que ademés de
divertirnos en varias videollamadas durante la pandemia fue el que mas me hizo tener
ganas de hacer programas de inteligencia artificial que entiendan el ajedrez (y las ideas
que habiamos charlado se terminaron transformando en el disparador de esta tesis). A
Gabo Mindlin por ser el que méds me contagié su pasion por los autoencoders en ese curso
de la UMA, y por recibirme con tantas ganas en su laboratorio al principio del cuatri para
poder hacerle preguntas y pedirle opiniones e ideas que fueron claves para poder hacer
esta tesis. A Hernan Grecco por la buena onda que tiene desde el dia que lo conoci, las
ganas de juntarnos en la facu a charlar sobre fisica, y por hacerme ver que mi tesis tenfa un
gran valor que yo desconocia: segiin él son este tipo de proyectos de interpretabilidad los
que van a hacer que varias herramientas de inteligencia artificial se terminen entendiendo
mejor que nunca. A Sofi Roitman por tipear la primera letra de esta tesis. A Pablo Mislej

por coparse a ser jurado de esta tesis y a recibirme en su oficina un tiempo antes para
conocernos y charlar de temas que nos copan a los dos.

Agradecimiento para Lichess por tener abierta y gratuita su base de datos, disponible
para que los que queremos hacer proyectos que involucran partidas de ajedrez podamos
hacerlos realidad.

Hay tantas personas a las que quiero mencionar en los agradecimientos que muy pro-
bablemente me esté olvidando de varios de ustedes sin querer, asi que el ultimo agrade-
cimiento va para todos ustedes (pero si sos uno de ellos escribime y te mando el tuyo
personalizado).

Indice general

o Introduccion ... Lo 1
1.1. Organizacién de la tesis o 2

.. Preliminares 3
2.1. Autoencoders 3
2.2. Interpretabilidad y Anélisis de Componentes Principales (PCA) 4
2.3. Ajedrez 5

.. Metodologia 11
3.1. Codificaciones de tableros de ajedrez 11
3.2. Herramientas e 13
3.2.1. Pipeline de desarrollo 14

.. Resultados e 17
4.1. Métricas de reconstruccion 17
4.2. Estructura del espacio latente 18
4.2.1. Distribucidon por aperturas 18

4.2.2. Significado de las componenteso 21

4.3. Evaluacién en posiciones fuera de distribuciéno 27
4.3.1. Partidas de jugadores con bajoElo 27

4.3.2. Posiciones reflejadas verticalmenteo 28

4.3.3. Posiciones de otras etapas de la partida 30

. Conclusiones 31

IX

1. INTRODUCCION

Hace un tiempo conoci los autoencoders y desde el primer instante supe que queria
hacer algin proyecto en el que estén invloucrados. Esta tesis es ese proyecto.

Mi introduccién a los autoencoders fue el video [1], en el que los usaban para describir
fotos de caras de personas en pocas variables. Me sorprendié que un método tan simple
pueda lograr algo tan abstracto como representar una cara, no como una lista de pixeles y
sus activaciones, sino con variables como largo del pelo, inclinacién de la cabeza, género,
etc.

Cuando pensamos en que la tesis fuera de la forma “entrenemos un autoencoder con
algo en particular y veamos cémo aprende conceptos” no fue nada dificil decidirnos porque
ese algo en particular fueran posiciones de ajedrez.

El objetivo principal de esta tesis es explorar cémo un modelo de autoencoder puede
representar posiciones de ajedrez en un espacio latente de baja dimensién (estos conceptos,
y otros que mencionemos en la introduccidn, estédn definidos en detalle més adelante), y qué
tipo de informacién semantica logra capturar esta representacién. Para eso, construimos
y entrenamos un autoencoder sobre un conjunto de datos compuesto por posiciones reales
extraidas de partidas jugadas en linea, y luego analizamos su comportamiento mediante
distintas herramientas estadisticas y visuales.

Generamos el conjunto de datos a partir de una porcién de la base publica de partidas
de Lichess correspondiente a mayo de 2019. Filtramos exclusivamente las partidas estandar
(ajedrez cldsico) en las que ambos jugadores tuvieran al menos 2100 puntos de Elo y el
ritmo de juego fuera de al menos 180 segundos por jugador. De estas partidas extraji-
mos posiciones intermedias, y representamos cada una como un vector binario mediante
codificacién one-hot de un bitboard extendido de 13 canales, uno por cada tipo de pieza
(seis por color) mas uno adicional para representar las casillas vacias. Cada posicién quedé
representada como un vector binario de dimensién 832 (13 x 64). Ademds, eliminamos
posiciones duplicadas para evitar fuga de datos (data leakage) y dividimos los datos en
conjuntos de entrenamiento y testeo.

Construimos un modelo de autoencoder entrenado para minimizar el error de recons-
truccion entre la entrada y la salida, pasando en el medio por un cuello de botella de
dimensién mas baja (20 especificamente). Una vez entrenado el modelo, evaluamos la cali-
dad de la reconstruccion tanto cuantitativamente usando el error cuadratico medio (ECM),
como estructuralmente calculando el niimero de casillas mal reconstruidas en cada tablero,
es decir, aquellas donde la pieza reconstruida no coincide con la original.

Posteriormente, analizamos la estructura del espacio latente aprendido. Para esto, apli-
camos andlisis de componentes principales (PCA) sobre las representaciones latentes de
un conjunto de posiciones no vistas por el modelo, y visualizamos el espacio proyectandolo
a planos generados por dos componentes principales. Primero analizamos qué proporcion
de la varianza explicaban las primeras componentes, para evaluar qué tan comprimible
era el espacio latente. Luego, generamos visualizaciones coloreadas por distintos atributos
semanticos de las posiciones: apertura, ubicacién de los reyes, posiciéon de peones centra-
les, entre otros. Esto nos permitié interpretar el significado de distintas direcciones del

2 1. Introduccion

espacio latente. Por ejemplo, observamos que la primera componente estaba fuertemente
correlacionada con el estado de los enroques de los jugadores, y que otras componentes
parecian estar relacionadas con la estructura de peones centrales.

También evaluamos el desempeno del modelo ante posiciones que diferian notablemente
de las del conjunto de entrenamiento. Para ello, aplicamos el mismo pipeline de evaluacién
sobre un conjunto de posiciones jugadas por jugadores de Elo bajo (a lo sumo 1000)
con poco tiempo en el reloj (a lo sumo 180 segundos). Comprobamos que el error de
reconstruccion, tanto en términos de ECM como de niimero de casillas mal reconstruidas,
era mas alto en este conjunto, como era de esperar. Esto sugiere que el autoencoder no
aprendié a respresentar posiciones guardando la informacién de la ubicacion de cada pieza,
sino captando regularidades propias de partidas de nivel intermedio o alto, que no siempre
se respetan en partidas de jugadores principiantes.

Por 1ltimo, exploramos la simetria “blancas-negras” del espacio latente evaluando la
reconstruccion de posiciones reflejadas verticalmente, con colores de piezas intercambiados.
Observamos que el error de reconstrucciéon de estas versiones reflejadas también es mayor
que el de las posiciones originales, lo cual indica que, aunque simétricas desde un punto
de vista geométrico, estas posiciones no son estadisticamente equivalentes en el corpus de
entrenamiento. Esto nos proporcioné evidencia empirica de que la estadistica de posiciones
en partidas reales de ajedrez no es completamente simétrica bajo reflexiones verticales.

En resumen, este trabajo no sélo mostré que es posible representar posiciones de aje-
drez de forma comprimida preservando buena parte de la informacién, sino que también
evidencio que el espacio latente aprendido refleja propiedades semanticas del juego y res-
ponde de manera coherente ante cambios estructurales o contextuales. Esta tesis cae en la
interseccién entre aprendizaje no supervisado y juegos complejos, y propone herramien-
tas para visualizar y entender el contenido de modelos entrenados en dominios ricos y
estructurados como el ajedrez.

1.1. Organizacion de la tesis

En el desarrollo de esta tesis abordamos cada una de esas etapas. El trabajo se estruc-
tura de la siguiente manera:

En el capitulo 2 se introducen los conceptos necesarios para comprender el trabajo,
incluidos autoencoders, analisis de componentes principales y nociones bésicas de ajedrez.
En el capitulo 3 se describe la metodologia seguida, incluyendo la codificacién ntimerica
de posiciones de ajedrez utilizada, las herramientas de programacién implementadas y el
pipeline de desarrollo. En el capitulo 4 se presentan los resultados obtenidos, con visuali-
zaciones e interpretabilidad sobre el espacio latente aprendido. Finalmente, en el capitulo
5 se discuten las conclusiones y posibles extensiones del trabajo.

2. PRELIMINARES

2.1. Autoencoders

Esta es una explicacion informal e intuitiva sobre qué son los autoencoders a través de
un ejemplo. Para una lectura més detallada ver [8].

Imaginemos que tenemos un conjunto de fotos de caras de personas. Una foto es algo
que tiene mucha informacién: para cada pixel que contiene hay un valor de activacion
entre 0 (negro) y 1 (blanco). Pero si uno le pide a una persona que describa una foto de
una cara, lo va a hacer muy bien diciendo muy pocas cosas (por ejemplo el largo del pelo,
el género, la distancia entre los ojos, etc). ;Se puede hacer un programa que aprenda a
describir en pocas variables una foto de una cara? La respuesta es si, y esta es una manera.

Hacemos una red neuronal que reciba como entrada un vector de R™ (en nuestro
ejemplo, un vector formado por las activaciones de los m pixeles de una foto), que tenga
una capa oculta de n neuronas con n mucho mas chico que m, y que la salida también
tenga tamano m como la entrada. Es decir, esta red neuronal, haga lo que haga, recibe
fotos como entrada y genera fotos en la salida, como muestra el esquema e la figra 2.1.

.=

[y {ee " eoe
{oo-a-ooo

(B

Fig. 2.1: Esquema de red neuronal que recibe y devuelve fotos.

;, Qué queremos que aprenda la red? Que cada vez que recibe en la entrada una foto de
una cara genere en la salida exactamente la misma foto (o una lo més parecida posible,
como se detalla mas adelante). Esto se puede hacer con muchas fotos de caras como
conjunto de entrenamiento (aprendizaje supervisado). La idea fundamental de hacer todo
esto es que cuando la red neuronal lo aprende, inevitablemente esté logrando comprimir
toda la informacion de la foto de una cara en solo los n nimeros de la capa del medio.
Con esto conseguimos lo que queriamos, que era poder describir una foto entera de una
cara con poca informacion.

Si llamamos X = R™ al espacio de entrada y de salida del autoencoder y Z = R”
al espacio correspondiente a la capa oculta del medio, entonces lo que estamos buscando
son dos funciones, cada una de las cuales vive en una familia parametrizada: una funcién
codificadora Eg4 : X — Z (parametrizada por el conjunto ¢ de coeficientes de una red
neuronal) y una decodificadora Dy : Z — X (parametrizada por el conjunto € de co-
eficientes de otra red neuronal). En este trabajo ambas familias de funciones van a ser
redes neuronales con arquitecturas especificas. Si # € X, a z = Ey(x) € Z lo llamamos la

3

4 2. Preliminares

codificacion de x, y a ' = Dy(z) € X lo llamamos la decodificacion de z. Al espacio Z lo
llamamos espacio latente.

Cuando se entrena al autoencoder lo que se busca es que la salida sea idéntica a la
entrada. Para esto, se busca que se minimice tanto como sea posible una funciéon que mide
la diferencia entre ellas, generalmente llamada funcion de pérdida o error . Una de las més
comunes, que es la que vamos a usar en este trabajo es

N
_ % S ECM (0, /) (2.1)

donde {z(M), .., 2™} C X es el conjunto de entrenamiento (y N su tamafio), z/() =
Dp(Ey(z))), y ECM es el error cuadritico medio, definido como

1 m
ECM (z,y) EZ —y;)? (2.2)

para z,y € R™. Lo que buscamos es

arg Iéllgl L(¢,0) (2.3)

La manera en la que estamos haciendo una reduccién de dimension es la siguiente.
Nuestros datos, que pertenecen a X = R™, provienen de alguna distribucién desconocida.
Esta distribucién puede tener correlaciones entre las distintas coordenadas, por lo cual
es esperable que el autoencoder pueda lograr comprimir toda la informacién relevante en
solamente las n coordenadas del espacio latente Z.

Teniendo esto en mente, ahora el autoencoder tiene otro uso: si nos olvidamos de la
entrada y de la funcién codificadora y nos quedamos solo con el espacio latente, la funcién
decodificadora y la salida, podemos a partir de puntos arbitrarios z € Z calcular sus image-
nes en X a través de Dy y conseguir asi datos sintéticos que siguen la misma distribucién
que los reales (o lo mds parecida posible, segiin qué tan buena sea la reconstruccién).

2.2. Interpretabilidad y Anélisis de Componentes Principales (PCA)

El objetivo de esta tesis es hacer interpretabilidad en el espacio latente de un autoen-
coder que va a ser entrenado con posiciones de ajedrez (detalles en la seccién 3), es decir,
buscar entender el significado de distintas regiones del espacio en el que se codifican los
datos.

Para analizar el espacio latente nos conviene aplicar la técnica de analisis de compo-
nentes principales (PCA), ver [6], [9] para una descripcién técnica. Esencialmente, PCA
calcula nuevos ejes en el espacio latente que son ortogonales y se ordenan de manera
decreciente de acuerdo a la varianza de los datos que explican.

A continuacion se describen los pasos necesarios para aplicar PCA a un conjunto de
datos pertenecientes al espacio latente. Sea A € RF¥*™ una matriz de datos, donde cada
una de las k filas es una muestra y cada una de las n columnas una variable del espacio
latente.

2.3. Ajedrez 5

1. Estandarizacion de los datos: centrar y escalar cada variable. Esto implica restar
la media y dividir por el desvio estandar de cada columna:

R Al
donde p; = % o1 Aij y o es el desvio estdndar de la columna j.

2. Céalculo de la matriz de covarianza: una vez que los datos estan centrados y
escalados, se calcula la matriz de covarianza:
AT A

N
k—1

Esta matriz captura las correlaciones lineales entre variables.

3. Descomposicién espectral (autovalores y autovectores): se calculan los auto-
valores \1 > A9 > ... > A, > 0y sus correspondientes autovectores vy, vs, ..., v, de
la matriz 3. Los autovectores representan las componentes principales del espacio
de datos y los autovalores indican cuanta varianza explica cada una.

4. Seleccion de componentes: se eligen algunos autovectores de los hallados en el
paso anterior. Esto define una base ortonormal en un subespacio menor dimensién

5. Proyeccién de los datos: se proyectan todos los datos al subespacio de menor
dimensién para obtener una descripcién del espacio en menos variables.

En lo que sigue de esta tesis la seleccion de componentes va a ser hecha siempre con
dos vectores, para poder visualizar facilmente la informacién.

2.3. Ajedrez

Esta seccién consiste en una explicacién de los conceptos bésicos de ajedrez necesarios
para poder entender los detalles de esta tesis.

El ajedrez es un juego de estrategia de informacion completa en el que dos jugadores se
enfrentan sobre un tablero de 8 x 8 casillas, alternando sus movimientos por turnos. Cada
jugador controla un conjunto de dieciséis piezas, entre las cuales hay seis tipos distintos
(ver figura 2.2). Las piezas son el rey, la dama (también llamada reina), dos torres, dos
alfiles, dos caballos y ocho peones.

Las piezas blancas se enfrentan a las piezas negras, y el jugador que controla las blancas
mueve primero, partiendo siempre desde la misma posicién inicial (ver figura 2.3).

6 2. Preliminares

Cada tipo de pieza tiene reglas especificas sobre cémo puede desplazarse por el tablero.
Por ejemplo, los caballos se mueven en forma de “L”, las torres en linea recta horizontal o
vertical, los alfiles en diagonal, y la dama puede moverse en cualquier direccién (vertical,
horizontal y diagonal). Los peones avanzan una casilla hacia adelante (o dos si es su primer
movimiento y el jugador lo desea), y capturan en diagonal. S6lo se permite mover piezas
propias, y en caso de que una pieza del adversario ocupe una casilla alcanzable, puede
ser capturada al mover una pieza propia a esa casilla. (Ver figura 2.9). El ganador es el
primero en capturar el rey del oponente.

Fig. 2.9: Posicién de ajedrez con los posibles movimientos de algunas piezas blancas (marcadas con
fondo verde) y puntos que indican las posibles casillas de destino.

Una de las jugadas especiales del juego es el enroque, que consiste en un movimiento
simultdneo del rey y una de las torres, en el que el rey se desplaza dos casillas hacia la
torre y esta salta por encima del rey, colocindose justo al lado opuesto. El enroque esta
sujeto a varias condiciones, entre ellas, que no haya ninguna pieza ocupando alguna casilla
que se encuentre en el camino entre el rey y la torre (ver figura 2.13).

2.3. Ajedrez 7

F1g 210 Blancas Justo antes F1g 211 Blancas Justo des— Fig. 212 Blancas JUStO des-

de enrocar. pués de jugar enro- pués de jugar enro-
que corto (lado dere- que largo (lado iz-
cho). quierdo).

Fig. 2.13: Ejemplo de enroque.

Para describir las posiciones en ajedrez, se utiliza una notacién estandarizada conocida
como notacion algebraica. En ella, cada casilla del tablero se identifica mediante una letra
(de la a a la h) que indica la columna, siendo a la de la izquierda desde el punto de vista
del jugador blanco, y un ntmero (del 1 al 8) que indica la fila. Por convencién, las blancas
ocupan inicialmente las filas 1 y 2, y las negras las filas 7 y 8. Para indicar qué pieza ocupa
una casilla, se antepone una letra mayiscula que representa la inicial del tipo de pieza (K
para rey, Q para dama, R para torre, B para alfil, N para caballo y P para pedn). Si la pieza
es negra, se respresenta con la misma letra pero en mintscula. Por ejemplo, Nf3 indica
que hay un caballo blanco en la casilla £3, mientras que nf3 indica que hay un caballo
negro en esa misma posicién. La notacion usada para describir jugadas en una partida es
similar.

Al comienzo de una partida, existen patrones de movimientos frecuentes que se han
estudiado extensamente y que reciben el nombre de aperturas o defensas (ver ejemplos
en la figura 2.18). Estas secuencias iniciales buscan posiciones convenientes para el juego,
en las que se persiguen conceptos estratégicos como el desarrollo eficiente de las piezas, el
control del centro del tablero o la preparacién el enroque. Se las suele clasificar en abiertas,
semiabiertas, cerradas y semicerradas segun el movimiento de los peones centrales, que
son los que comienzan en las columnas d y e.

F1g 214 Ruy Lépez: Fig. 2.15: Siciliana: e4, Fig. 2.16: Defensa fran- Fig. 2.17: Indla de rey:
e4, eb, Nf3, ch. cesa: e4, e6. d4, Nf6, c4,
Nc6, Bbs. g6.

Fig. 2.18: Ejemplos de aperturas.

8 2. Preliminares

A lo largo de esta tesis se trabajara con partidas extraidas de la base de datos publica
de Lichess, un servidor de ajedrez libre y popular. Las partidas alli se registran en formato
PGN (Portable Game Notation), una notacién de texto que incluye entre otras cosas el
nombre de los jugadores, el tiempo de juego, la fecha, el resultado, y la secuencia completa
de jugadas. A continuacién se muestra un ejemplo de partida extraida de dicha base de
datos:

[Event "casual blitz game"]

[Site "https://lichess.org/HMXmrrQe"]
[Date "2024.12.31"]

[Round "-"]

[White "teoccc"]

[Black "JuliGarbulsky"]

[Result "1-0"]

[GameId "HMXmrrQe"]

[UTCDate "2024.12.31"]

[UTCTime "23:30:45"]

[WhiteElo "1592"]

[BlackElo "1487"]

[Variant "Standard"]

[TimeControl "300+0"]

[ECO "C62"]

[Opening "Ruy Lopez: Steinitz Defense"]
[Termination "Time forfeit"]

1. e4 eb 2. Nf3 Nc6 3. Bbb d6 4. d4 exd4 5. Nxd4 Bd7 6. Nxc6 Bxc6

7. Bxc6+ bxc6 8. 0-0 Rb8 9. Nc3 g6 10. b3 Bg7 11. Bb2 Nf6 12. Rel Nd7
13. Qf3 Neb 14. Qe2 0-0 15. f4 Nd7 16. eb Re8 17. Qc4 Rb6

18. exd6 cxd6 19. Rxe8+ Qxe8 20. Rf1l Qe3+ 21. Khl Qcb 22. Qxcb Nxcb
23. Nd1 Rb7 24. Rel Bxb2 25. Nxb2 f5 26. Re8+ Kf7 27. Rh8 Kg7

28. Re8 Kf7 29. Re2 Re7 30. RxeT7+ Kxe7 31. g3 Ne4 32. c4 db

33. cxdb cxdb 34. Kg2 Kd6 35. Kf3 Kcb 36. Nd3+ Kd4 37. Neb Kcb

38. Ke3 d4+ 39. Kd3 Kd5 40. Nc4 Nf2+ 41. Ke2 Ng4 42. h3 Ne3

43. Nxe3+ dxe3 44. Kxe3 ab 45. g4 h6 46. gxfb gxfb5 47. Kd3 Keb

48. Kc4 Kd6 49. b4 Kc6 50. bb+ Kb7 51. a4 Ka7 52. Kc5 Kb7 53. b6 hb
54. h4 Kb8 55. Kc6 Ka8 56. Kb5 Kb8 57. Kxab Kc8 58. Ka6 Kb8 59. ab Ka8
60. b7+ Kb8 61. Kb5 Kc7 62. a6 Kb8 63. Kc6 Ka7 64. Kc7 1-0

Cada linea con corchetes contiene metadatos de la partida, y la secuencia de jugadas
aparece luego, indicando qué pieza se mueve y a qué casilla.

Para este trabajo los metadatos relevantes van a ser WhiteElo y BlackElo (los puntajes
que describen los niveles de habilidad de los jugadores [3]), TimeControl (que contiene la

2.3. Ajedrez 9

informacién del tiempo total con el que cuentan los jugadores para la partida) y Opening
(que contiene el nombre correspondiente a la apertura o defensa jugada).

10

2. Preliminares

3. METODOLOGIA

3.1. Codificaciones de tableros de ajedrez

Dado que queremos hacer que la entrada y la salida de nuestra red neuronal sean
posiciones de ajedrez, el primer paso es pensar cémo codificar una posiciéon de ajedrez
como un vector de numeros. Existen multiples maneras de hacerlo, pero en este trabajo
nos enfocamos en la mas usada, llamada bitboard (ver por ejemplo [12], [4], [5], [11]), y le
hacemos modificaciones para conseguir otra que llamamos one hot B (definida més ade-
lante). Para otras posibles codificaciones ver [7], [10]. Aclaracién: no confundir el término
“codificaciéon” refiriéndose a la manera de representar una posicién como un vector de
nameros con el mismo término usado para hablar de dénde cae en el espacio latente un
punto a través de la funcién codificadora (seccién 2.1). La ambigiiedad esté resuelta por
el contexto en el que se usa la palabra.

La primera codificacion, ampliamente utilizada en trabajos relacionados con apren-
dizaje automatico aplicado al ajedrez, es la conocida como bitboard. Esta representacion
consiste en construir un vector de longitud 12 x 64 = 768, resultado de concatenar 12
vectores de 64 entradas cada uno. Cada uno de esos 12 vectores corresponde a uno de
los 12 tipos posibles de pieza (6 tipos por cada color: rey, dama, torre, alfil, caballo y
peén). La i-ésima coordenada de uno de estos vectores vale 1 si en la casilla i del tablero
se encuentra el tipo de pieza correspondiente al canal en cuestion, y 0 en caso contrario.
Asi, por ejemplo, si hay un caballo blanco en la casilla £3, el canal correspondiente a los
caballos blancos tendrd un 1 en la posicién £3, y el resto de los canales tendra un 0 en esa
posicién. Esta representacién es esparsa, ya que un tablero puede contener como maximo
32 piezas, por lo que a lo sumo 32 de las 768 coordenadas son iguales a 1; el resto son ceros.
También es redundante, ya que si una casilla contiene una pieza, entonces necesariamente
todos los otros canales tienen un 0 en esa posicién.

Una limitacién de esta codificacién surge al utilizarla como salida de una red neuronal.
Dado que las activaciones de las neuronas suelen tomar valores reales entre 0 y 1, hay que
disenar un procedimiento para interpretar el resultado como una posicién de ajedrez. Una
manera posible es definir qué pieza que hay en la i-ésima casilla como el canal que tiene
mayor activacion en ella, pero esto daria lugar a un tablero que tiene piezas en todas sus
casillas (no tiene ninguna vacia). Esto dltimo se puede solucionar definiendo un umbral
que una activacién debe superar para que la casilla no se considere vacia (Ejemplo en la
figura 3.4).

11

12 3. Metodologia

] b []

Fig. 3.1: Umbral alto. Fig. 3.2: Umbral medio. Fig. 3.3: Umbral bajo.

Fig. 3.4: Posicién generada por una salida hipotética de un autoencoder, reconstruida para distintos
umbrales.

Si bien ese procedimiento cumple lo que necesitamos, tiene un umbral arbitrario, que
su valor puede cambiar en la reconstruccién de una posicion.

Por este motivo decidimos utilizar una codificacién alternativa, que denominamos one
hot B ', y que se basa en una variante directa del bitboard. En lugar de tener 12 canales
(uno por tipo de pieza), agregamos un canal adicional que indica si una casilla esté vacia.
Asi, el tablero se representa con 13 x 64 = 832 coordenadas. Al igual que antes, cada
uno de los 13 vectores de 64 posiciones representa un canal asociado a un tipo de pieza o
al estado “vacio”. Para cada casilla del tablero, exactamente una de las 13 coordenadas
correspondientes vale 1 y las demés valen 0, indicando el contenido de la casilla. Es decir,
cada casilla del tablero se representa como un vector one hot de dimensién 13. Esta repre-
sentacién, aunque también redundante (ya que el canal de casillas vacias puede inferirse
a partir de los demads), tiene la ventaja de permitir una interpretacién directa de la salida
de la red neuronal: basta con tomar, para cada casilla, el canal con mayor activacién y
asignar a esa casilla el contenido correspondiente. Este mecanismo evita el problema del
umbral y garantiza que cada casilla tenga una unica interpretacién.

Es importante mencionar que en algunos trabajos la representacién bitboard también
es llamada one hot (ver por ejemplo [12]), lo cual puede llevar a confusién. En este trabajo
vamos a usar solamente one hot B, refiriéndonos siempre a la codificacién que utiliza 13
canales y garantiza que cada casilla esté representada por un tnico 1 entre 13 opciones
posibles.

A modo de ejemplo, en la figura 3.5 se puede observar la representaciéon one hot B de
una posicion.

! La llamo one hot Bergerman, que es el apellido de mi amigo al que se le ocurrié esta codificacién
mientras comfamos una pizza (gracias Mati!).

3.2. Herramientas 13

[00000000 00000000 00000000 10111010
00000001 10000100 00000000 01101010
00000000 00001010 00000000 01110001
00001000 00010000 00000000 01100111
00010000 01100000 00000000 10001110
10100000 00000000 000000DOO 01011111
01000000 00000000 00001000 10110111
00000000 00000000 00000000 10101110]

A A G e

Fig. 3.5: Ejemplo de una posicién de ajedrez y su codificacién one hot B.

A modo de observacion, este manera de reconstruir posiciones a partir de un vector
numérico podria dar lugar a tableros con piezas que formen una posicién que no sea vélida
en el ajedrez (por ejemplo, una que tenga dos reyes blancos).

Esta eleccion de codificacién fue fundamental para poder reconstruir tableros de ma-
nera coherente a partir de la salida del autoencoder, y constituye uno de los aspectos clave
del diseno metodoldgico de este trabajo.

3.2. Herramientas

Para el desarrollo de este trabajo usamos un conjunto de herramientas de software
que permitieron la implementacién, entrenamiento y analisis de modelos de autoencoders
aplicados a posiciones de ajedrez. Estas fueron las principales:

= Lenguaje de programacién: Python, en el IDE Spyder de Anaconda. Especificamente:
Python 3.12.2 64-bit — Qt 5.15.2 — PyQt5 5.15.10 — macOS 13.4 (arm64), y
Spyder 5.5.1. Elegimos Python por su amplia adopcién en la comunidad cientifica
y de aprendizaje automatico, y por su ecosistema de librerias especificas para cada
etapa del trabajo.

= Manipulacién de datos: NumPy versién 1.26.4. NumPy fue fundamental para repre-
sentar y transformar datos en vectores y matrices, incluyendo las codificaciones de
los tableros.

» Ajedrez: python-chess (Versién 1.11.2). La libreria python-chess la usamos para ma-
nipular posiciones en notacion FEN, generar tableros y convertir entre representa-
ciones del juego y estructuras numeéricas. Fue central para implementar las funciones
de codificacién y decodificacién de posiciones.

» Redes neuronales: TensorFlow (2.19.0) y Keras. Para definir, entrenar y evaluar los
autoencoders usamos TensorFlow junto con su interfaz de alto nivel Keras. Keras

14 3. Metodologia

permitié una implementacion clara y modular de las redes, funciones de activacién
y optimizacién, y métricas de reconstruccién.

» Visualizacién: Matplotlib (version 3.9.2). La usamos para generar los graficos.

= Conjunto de datos: Lichess. Usamos datos publicos de partidas provenientes de la
base de datos de Lichess [2] bajo la licencia Creative Commons CCO license. Las
partidas las filtramos segun criterios de tiempo y nivel de los jugadores (ver Seccién
3.2.1), para su posterior codificacién.

Estas herramientas nos permitieron implementar de forma eficiente un pipeline com-
pleto, desde la preparacion de datos hasta la visualizacién de resultados, en un entorno
abierto, reproducible y de bajo costo computacional.

3.2.1. Pipeline de desarrollo

En esta seccién describimos el pipeline completo de desarrollo, dividido en etapas:
recoleccién y preprocesamiento de datos, codificacién de las posiciones, arquitectura del
autoencoder y entrenamiento del modelo.

Recoleccion y filtrado de datos

Los datos fueron descargados de la base de datos abierta de Lichess, especificamente
del archivo que contiene todas las partidas jugadas durante mayo de 2019. Este archivo
contiene més de 35 millones de partidas, muchas de las cuales no son ttiles para nuestro
andlisis: algunas fueron jugadas por principiantes (jugadores de bajo Elo) y otras con poco
tiempo en el reloj (partidas tipo bullet). Este tipo de partidas suele tener “ruido” y no
tantos patrones propios del ajedrez, por ejemplo, errores groseros por apuros de tiempo o
falta de experiencia.

Para enfocarnos en partidas de mayor calidad, filtramos el dataset conservando solo
aquellas en las que ambos jugadores tienen un Elo de al menos 2100 y donde el tiempo
inicial en el reloj es de al menos 180 segundos por jugador. Luego del filtrado, nos quedamos
con aproximadamente medio millén de partidas.

Seleccion de posiciones

Cada partida de ajedrez contiene varias posiciones (una por cada jugada), pero de-
cidimos seleccionar solo una por partida para el entrenamiento del modelo. Elegimos la
posicién resultante luego de que ambos jugadores hayan realizado 10 jugadas (es decir,
tras 20 movimientos en total), siempre que la partida no haya terminado antes. Este punto
de la partida representa un buen equilibrio: por un lado, ya se hicieron suficientes jugadas
como para sea poco probable que la posicién también haya sido alcanzada en otra partida
de la base de datos; y por otro lado, la distribucién de las piezas todavia es més organizada
que en etapas mas avanzadas del juego.

De este modo, seleccionamos 100.000 posiciones. Luego, eliminamos las posiciones re-
petidas para evitar data leakage entre los conjuntos de entrenamiento y validacion. Esto
nos dejé un total cercano a 90.000 posiciones tnicas.

3.2. Herramientas 15

Codificacién de las posiciones

Cada posicién fue representada como un vector usando la codificaciéon que vamos a
llamarone hot B, (ver seccién 3.1) debido a su simplicidad y capacidad de reconstruccién
de posiciones a partir de vectores con valores no discretos.

Arquitectura del autoencoder

La arquitectura del autoencoder fue disenada como una red neuronal densa y simétrica
respecto de la capa central. Fijadas las dimensiones de la entrada y de la salida (que
coinciden entre ellas y a su vez con la del vector de la codificacién) y la cantidad de
neuronas en la capa latente, construimos el codificador colocando capas ocultas cuyos
tamanos se reducen progresivamente, a la mitad del anterior, hasta alcanzar el de la
dimensién latente. Luego, el decodificador repite esta estructura en orden inverso. Por
ejemplo, para pasar de 832 valores en la entrada a 20 neuronas en la capa latente, usamos
capas ocultas de tamanos 416, 208, 104, 52, y 26.

Todas las capas son densas (totalmente conectadas), con funcién de activacién ReLU,
excepto la dltima capa del codificador y la tltima del decodificador, donde se utiliza la fun-
cién sigmoide. Esto permite obtener salidas acotadas entre 0 y 1, lo cual es deseable dado
que las entradas estan compuestas sélo por ceros y unos, y que puede resultar conveniente
que el espacio latente sea acotado.

Entrenamiento del modelo

El conjunto de 90.000 posiciones fue dividido aleatoriamente en un conjunto de entre-
namiento (85 %) y uno de validacién (15 %). Aunque el autoencoder se entrena de forma
supervisada (entrada y salida son iguales), el objetivo es que aprenda una representacién
latente significativa de los datos (no supervisada).

El entrenamiento se realizé con Keras, usando el optimizador Adam, un tamafno de
batch de 256 y la métrica de error cuadratico medio. Para elegir la cantidad de épocas
de entrenamiento, analizamos la evolucion del error en funcién de la cantidad de epochs,
utilizando como referencia un autoencoder con codificaciéon one hot B y 20 neuronas
latentes. En la figura 3.6 se observa que el error en el conjunto de validaciéon se estabiliza
alrededor de las 125 épocas, por lo que esta cantidad se adopté como valor fijo para todos
los entrenamientos posteriores.

Elecciéon de la dimension latente

Con el pipeline definido, exploramos distintos valores posibles para la cantidad de
neuronas en la capa latente. Existe un compromiso entre fidelidad de reconstruccién y
capacidad de compresién: pocas neuronas pueden no ser suficientes para representar la
informacién, mientras que muchas permiten reconstruir bien las entradas pero sin lograr
una reduccién significativa de la dimensionalidad.

Para evaluar este balance, entrenamos modelos con diferentes tamanos de la capa laten-
te y comparamos su error de reconstruccion (ver figura 3.7). Realizamos esta comparacién
para la codificacion one hot B. En funcién de los resultados, seleccionamos una dimension
latente de 20 neuronas como compromiso adecuado.

16 3. Metodologia

ECM por Epach

—— Entrenamiento
- Validacion

0.040
0.035
0.030 -

=

U 0,025

4t}

0,020 +——\

0.015 4

0.010 4

T T T T -
4] 50 100 150 200 250 300
Epoch

Fig. 3.6: Error (ECM) en el conjunto de entrenamiento y de validacién del autoencoder en funcién
de la cantidad de épocas.

® Entrenamiento
Validacian

0.03D 4

0.025 1

0.02D 4

ECM

0.015 4

0.010 4

0.005 1

0.000 4

T T
0 20 40 60 80 100 120
Dimensidon latente

Fig. 3.7: Error (ECM) en conjuntos de entrenamiento y de validacién del autoencoder en funcién
de la cantidad de neuronas latentes.

Evaluacion final

Finalmente, evaluamos el modelo ya entrenado sobre un conjunto de testeo indepen-
diente (no utilizado ni en entrenamiento ni en validacién), proveniente de las 500 mil
posiciones ya filtradas por calidad de juego. Este conjunto contiene aproximadamente
80.000 posiciones y nos permite estimar la capacidad real del autoencoder para generali-
zar a datos nuevos. Como métricas, utilizamos por un lado, nuevamente el error cuadratico
medio, y por otro lado, la fraccién de casillas del tablero mal reconstruidas (ver seccién
4.1).

4. RESULTADOS

En este capitulo presentamos los resultados obtenidos con el autoencoder entrenado
para representar posiciones de ajedrez. Dividimos los andlisis en tres secciones: primero
evaluamos la capacidad de reconstruccion del modelo, luego exploramos la estructura del
espacio latente en busca de interpretabilidad, y finalmente analizamos el desempeno del
modelo ante posiciones que se alejan de la distribucién del entrenamiento.

4.1. Meétricas de reconstruccién

Evaluamos la calidad de las reconstrucciones utilizando dos métricas distintas sobre el
conjunto de testeo:

» Error cuadrédtico medio (ECM), ver ecuacién (2.2).

» Nimero de casillas mal reconstruidas (NCMR): dada una salida del autoencoder,
reconstruimos la posicién de ajedrez correspondiente con el procediminto definido
en la seccién 3.1. Consideramos que una casilla esta mal reconstruida si su estado no
coincide con el de la posicién original. Calculamos entonces el nimero de casillas mal
reconstruidas sobre un conjunto de posiciones y tomamos el promedio. Se pueden
ver ejemplos de esta métrica en la figura 4.7.

Ambas métricas reflejan distintas formas de error: mientras que el ECM captura errores
pequenos en la representacion numérica, la segunda métrica es més estricta desde el punto
de vista ajedrecistico y da una mejor intuicién de qué tan bien reconstruida esta la posicién.

Los resultados obtenidos en el conjunto de testeo fueron:

= ECM: 0.01466.

» NCMR: 7.55 (calculado con 1.000 posiciones de las del conjunto de testeo, para
mayor velocidad computacional).

17

18 4. Resultados

1 b G d 0 T 3 h 2 b c] f 3 h a >
Fig. 4.4: Posicién reconstrui- Fig. 4.5: Posicién reconstrui- Fig. 4.6: Posicién reconstrui-
da 1 (8 casillas inco- da 2 (3 casillas inco- da 3 (16 casillas in-
rrectas). rrectas). correctas).

Fig. 4.7: Ejemplos de posiciones de ajedrez originales y sus respectivas reconstrucciones.

4.2. Estructura del espacio latente

Para estudiar la estructura interna del espacio latente generado por el encoder, aplica-
mos Anélisis de Componentes Principales sobre las codificaciones del conjunto de testeo.
Esta técnica permite proyectar los vectores latentes en componentes ortogonales ordenadas
segun la varianza que explican.

El grafico de varianza acumulada indica que una fraccién importante de la varianza
total puede explicarse con pocas componentes principales (figura 4.8). Las primeras tres
componentes explican el 52 % de la varianza total, y las primeras nueve el 94 %.

Lo que sigue es hacer andlisis de interpretabilidad para buscar si las componentes
principales tienen significados especificos para las posiciones de ajedrez que describen.

4.2.1. Distribucién por aperturas

Proyectamos las posiciones sobre las dos primeras componentes principales y colorea-
mos los puntos segin la apertura jugada en la partida a la que pertenece cada una. La
informacién de la apertura jugada estd incluida en la base de datos de Lichess.

Observamos una cierta separacién entre aperturas, lo que sugiere que el modelo ha
captado aspectos distintivos del tipo de juego generado por distintas lineas de apertura
(figura 4.9).

4.2. Estructura del espacio latente

19

Varianza explicada por componente

Varianza explicada acumulada

0.20 4 I

=
G
|

o
-
5]

Vananza explicada

0.05

0.00
0.0 2.5 5.0 15 10.0 125

Componente principal

15.0

1.0+ === 90% de varianza

0.8

0.6

varianza acumulada

0.4

0.2

0.0 -
17.5 2000 0.0 25 5.0 15 10.0 125 150

cantidad de componentes

Fig. 4.8: Gréficos de varianza explicada por cada componente principal y de varianza total acumu-

lada.
PCA del espacio latente
6
Apertura *
King's Indian
Other
7 = sicilian
+ [Italian
Queen's Gambit
24 + FHench
4 Ruy Lopez
~ 017
4
_2 | K
—4 4 -
_6 -
T T T T T T
-6 —4 -2 0 2 4
PC1

Fig. 4.9: Primeras dos componentes principales de las posiciones codificadas en el espacio latente,
coloreando por la apertura jugada en sus correspondientes partidas.

También proyectamos al plano generado por la primera y tercera componente principal
(figura 4.10), y al plano generado por la segunda y tercera (figura 4.11).

20 4. Resultados

PCA del espacio latente

Apertura -
6 King's Indian
Other
= Sicilian
+ Ialian .
4 Queen's Gambit ® '
+ French
4 Ruy Lopez e
2 -
i
&
0 -
L 3
_2 -
_4 4
T T T T T T
-6 -4 -2 0 2 4

Fig. 4.10: Primera y tercera componente principal de las posiciones codificadas en el espacio latente,
coloreando por la apertura jugada en sus correspondientes partidas.

4.2. Estructura del espacio latente 21

PCA del espacio latente

Apertura

King's Indian
Other

Sicilian

Italian

Queen's Gambit
French

Ruy Lopez

$o el
24— ; 5 : A S

PC3

Fig. 4.11: Segunda y tercera componentes principales de las posiciones codificadas en el espacio
latente, coloreando por la apertura jugada en sus correspondientes partidas.

4.2.2. Significado de las componentes

Exploramos visualmente el significado de las componentes principales coloreando las
posiciones segin la presencia de determinadas piezas o estructuras.

Primera componente (PC1). Parece estar relacionada con el estado de los enroques.
Las posiciones suelen caen en regiones distintas segin si los reyes estdn o no enrocados
(figuras 4.12 y 4.13). Mirando ambos graficos se puede ver que esta componente tiene
regiones especializadas en las cuatro combinaciones posibles de blancas y negras enrocadas
y no enrocadas (con enroque corto, que es el que se obtiene cuando los reyes dejan de estar
en su columna inicial que es la e, y pasan a estar en la columna g).

22 4. Resultados

PCA del espacio latente

Ubicacidn del rey negro -

» g8
ek
i

PC2
]
.

e

Fig. 4.12: Primeras dos componentes principales de las posiciones codificadas en el espacio latente,
coloreando segun la casilla en la que esta el rey negro

PCA del espacio latente

Ubicacidon del rey blanco =
e gl
cl
atro
el

PC2
]
.

e

Fig. 4.13: Primeras dos componentes principales de las posiciones codificadas en el espacio latente,
coloreando segtn la casilla en la que esta el rey blanco

Segunda y tercera componente. Estas componentes capturan caracteristicas rela-
cionadas con la estructura de peones centrales, es decir, los peones blancos y negros de
las columnas d y e. En las figuras 4.14, 4.15, 4.16 se puede ver el efecto que tienen estas
dos componentes en la ubicacién del peén negro de la columna e, mientras que el de la
componente principal es casi nulo. Coloreamos cada punto segin dénde estd el peén en la
posicién correspondiente, y la categoria“otro” significa que en las tres casillas analizadas
hay o bien més de un pedn del color en cuestiéon o bien ninguno. Algo similar ocurre con
los otros tres peones centrales, con la excepciéon de que para el peén blanco de la columna
e si parece ser relevante la primera componente principal.

4.2. Estructura del espacio latente 23

PCA del espacio latenta

Unicacion del pein negro de e

PC2

-2

Fig. 4.14: Primeras dos componentes principales de las posiciones codificadas en el espacio latente,
coloreando segun la casilla en la que estd el pedn negro de la columna e.

PCA del espacio latenta

Unicacion gel pesn negro de e)
61 . 86

PC3

-2

Fig. 4.15: Primera y tercera componentes principales de las posiciones codificadas en el espacio
latente, coloreando segun la casilla en la que esta el peén negro de la columna e.

PCA del espacio latenta

Ubicaciin del pran negro de
. e

Fig. 4.16: Segunda y tercera componentes principales de las posiciones codificadas en el espacio
latente, coloreando segun la casilla en la que esta el peén negro de la columna e.

24 4. Resultados

Peén negro de la columna d (figuras 4.17, 4.18 y 4.19):

PCA del espacio latenta

Umcacion del pein negro de d
atra

-2

Fig. 4.17: Primeras dos componentes principales de las posiciones codificadas en el espacio latente,
coloreando segun la casilla en la que estd el pedn negro de la columna d.

PCA del espacio latenta

Unscacion del pesn negro de d '
+ atrn

PC3

-2

Fig. 4.18: Primera y tercera componentes principales de las posiciones codificadas en el espacio
latente, coloreando segun la casilla en la que esta el peén negro de la columna d.

PCA del espacio latenta

Ubecacion del peca negro de d
atre

Fig. 4.19: Segunda y tercera componentes principales de las posiciones codificadas en el espacio
latente, coloreando segun la casilla en la que esté el peén negro de la columna d.

4.2. Estructura del espacio latente 25

Peén blanco de e (figuras 4.20, 4.21 y 4.22):

PCA del espacio latenta

Unicacion gel pesn blance de e
oo

-2

Fig. 4.20: Primeras dos componentes principales de las posiciones codificadas en el espacio latente,
coloreando segun la casilla en la que esté el pedn blanco de la columna e.

PCA del espacio latenta

Umicacion del pedn Bance de o "]
i o . Iy

PC3

-2

Fig. 4.21: Primera y tercera componentes principales de las posiciones codificadas en el espacio
latente, coloreando segun la casilla en la que esta el peén blanco de la columna e.

PCA del espacio latenta

& Ubicarian del peon blarco de e

w ey
=

Fig. 4.22: Segunda y tercera componentes principales de las posiciones codificadas en el espacio
latente, coloreando segun la casilla en la que esté el peén blanco de la columna e.

26 4. Resultados

Peén blanco de d (figuras 4.23, 4.24 y 4.25):

PCA del espacio latents

Unicacion gel pesn blance de -

PC2

-2

Fig. 4.23: Primeras dos componentes principales de las posiciones codificadas en el espacio latente,
coloreando segun la casilla en la que esté el pedn blanco de la columna d.

PCA del espacio latents

Ubscacion del pedn bance de d s "
- . o4

PC3

-2

Fig. 4.24: Primera y tercera componentes principales de las posiciones codificadas en el espacio
latente, coloreando segun la casilla en la que esta el peén blanco de la columna d.

PCA del espacio latents

Ubicacion dei pean blanco de d

s T . om

Fig. 4.25: Segunda y tercera componentes principales de las posiciones codificadas en el espacio
latente, coloreando segun la casilla en la que esta el peén blanco de la columna d.

4.3. Evaluacién en posiciones fuera de distribucion 27

Séptima componente. Se asocia con la presencia de un caballo blanco en la casilla
f3 (casilla muy comun para un caballo blanco durante la apertura de una partida). Ver
figura 4.26.

PCA del espacio latente

Fig. 4.26: Primera y séptima componentes principales de las posiciones codificadas en el espacio
latente, coloreando segin si hay o no un caballo blanco en la casilla f3.

4.3. Evaluacién en posiciones fuera de distribucion

Una pregunta critica que podemos hacernos es cudl es la manera en la que el autoen-
coder logra reducir la dimension de posiciones de ajedrez: ;japrendié de patrones comunes
del juego o solamente estd guardando de alguna manera la informacién de la ubicacién de
cada pieza?

Para responder a esta pregunta, realizamos experimentos para ver cémo responde el
autoencoder ante datos que siguen una distribucién distinta a la del conjunto de entrena-
miento.

4.3.1. Partidas de jugadores con bajo Elo

Recolectamos posiciones provenientes de partidas entre jugadores con Elo menor o
igual a 1000 y con un control de tiempo de a lo sumo 180 segundos. Estas partidas estan
considerablemente fuera de la distribucién de las usadas en el entrenamiento. En la figura
4.33 se pueden ver algunas de estas posiciones y sus respectivas reconstrucciones.

Las métricas de reconstruccién en este caso fueron:
= ECM: 0.02090.

» NCMR: 10.97 (calculado con 1.000 posiciones).

Como se puede ver, el modelo reconstruye peor estas posiciones que las del conjunto
de testeo proveniente de la misma distribucién que el de entrenamiento (el ECM aumentd

28 4. Resultados

en un 43 % y el NCMR en un 45 %). Esto sugiere que el autoencoder aprendié una repre-
sentacién més ajustada al estilo de juego de partidas de alto nivel, y no especificamente
la informacién de la ubicacién de cada pieza en el tablero.

= 5] . =0 5]

Fig. 4.30: Posicién recons- Fig. 4.31: Posicién recons- Fig. 4.32: Posicién recons-
truida 1 (14 casillas truida 2 (9 casillas truida 3 (19 casillas
incorrectas). incorrectas). incorrectas).

Fig. 4.33: Ejemplos de posiciones originales de ajedrez de Elo bajo (< 1000) y poco tiempo en el
reloj (< 180 segundos) y sus respectivas reconstrucciones.

4.3.2. Posiciones reflejadas verticalmente

También analizamos el desempeno del modelo ante posiciones generadas artificialmente
mediante un proceso de reflexion vertical del tablero e intercambio de colores (ver figura
4.36). La idea es que una posicién de blancas se convierte en una posicién de negras (y
viceversa) con las piezas en simetria vertical.

Para este tipo de posiciones, usando las mismas dos métricas obtuvimos

= ECM: 0.01747, que fue calculado con posiciones generadas intercambiando colores y
reflejando verticalmente las del conjunto de testeo original (respecto del cual aument6
19 %). Para ver que la diferencia es significativa (ver figura 4.37), realizamos un test a
nivel aproximado « la hipétesis Hy : p < po (donde i la esperanza del ECM para este
tipo de posiciones y g la de las originales). Suponemos que el niimero de muestras de
cada distribuciéon (N=83595) es suficientemente grande, y usamos como estadistico

T=+vVN @, donde X es el conjunto de muestras de ECMs de posiciones reflejadas

4.3. Evaluacién en posiciones fuera de distribucion 29

Fig. 4.34: Posicién de ajedrez. Fig. 4.35: Posicién de ajedrez reflejada vertical-
mente y con colores invertidos.

Fig. 4.36: Ejemplo de una posicién y la que resulta de reflejarla verticalmente e invertir colores.

verticalmente, X su promedio, y s el desvio estdndar muestral de los ECM de las
posiciones originales. Obtuvimos T' = 129, 31, por lo que rechazamos la hipétesis.

= NCMR: 9.17, que fue calculado con posiciones generadas con el mismo proceso de
recién a partir del conjunto de las 1.000 originales para esta métrica (respecto del
cual aument6 21 %).

Histogramas superpuestos
70

e Originales

Reflejados
60 -

50 4

40 A

Densidad

30 1

201

101

T T T T
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
ECM

Fig. 4.37: Histogramas de las distribuciones de ECM de ambos conjuntos de posiciones.

Este resultado sugiere que las posiciones de ajedrez no siguen una distribucién simétrica
respecto del reflejo vertical, a pesar de ser un juego que en sus reglas y configuracién inicial
si lo es (con la tincia excepcién de que las blancas juegan primero).

30 4. Resultados

4.3.3. Posiciones de otras etapas de la partida

Como el autoencoder fue entrenado usando solamente posiciones correspondientes a la
movida 20 de cada partida, es esperable que el error de reconstrucciéon también aumente si
lo medimos con posiciones correspondientes a otra etapa del juego. Esto puede verse en la
figura 4.38. El grafico muestra el ECM de conjuntos de 100 mil posiciones corresondientes
a cada etapa del juego, excepto por el primer punto (el de abajo a la izquierda) que se
correponde con el ECM original calculado en la secciéon 4.1. Es razonable que el error
aumente a medida que la etapa de la partida con la que se lo mide se aleja de las 20
jugadas, porque las posiciones suelen ser cada vez més diferentes (por ejemplo, tienen
cada vez menos piezas en el tablero). Ver figura 4.45.

Error de testeo segin altura de la partida

0.05 -

0.02

2‘0 3‘0 4‘0 5‘0 6‘0 ?ID
Cantidad de movidas

Fig. 4.38: Error de reconstruccién del autoencoder (ECM) medido con conjuntos de posiciones
correspondientes a distintas etapas del juego.

o O B E N E
Fig. 4.43: 60 movidas. Fig. 4.44: 70 movidas.

Fig. 4.45: Distintas etapas de una misma partida, contando movidas desde la posicién inicial.

5. CONCLUSIONES

En este trabajo entrenamos y analizamos un autoencoder para representar posiciones
de ajedrez en un espacio latente de baja dimension. Mostramos que el modelo logra una
reconstruccion razonable de las posiciones originales y que su representacion interna cap-
tura estructuras relevantes del juego, como el estado del enroque y la disposicién de los
peones centrales.

Ademas, exploramos la performance del modelo ante posiciones atipicas, como aquellas
jugadas por jugadores principiantes; o posiciones generadas reflejando verticalmente e
invirtiendo colores de otras ya existentes. En ambos casos, observamos una degradacion
en la calidad de reconstruccién, lo cual sugiere que el autoencoder ha aprendido patrones
caracteristicos del ajedrez de alto nivel.

Estos resultados muestran que es posible construir representaciones comprimidas de
posiciones de ajedrez que preservan informacién estratégica y tactica, abriendo la puer-
ta a futuras aplicaciones en andlisis automatico de partidas, generacién de contenido y
aprendizaje no supervisado en juegos.

31

32

5. Conclusiones

Bibliografia

[1] Computer Generates Human Faces, CodeParade, YouTube, 2017. https://youtu.
be/4VAkrUNLKSo?si=TJFrx0qbF0jkJFnB

[2] Lichess Database. Lichess, 2025. https://database.lichess.org/
[3] Chess rating systems. Lichess, 2025. https://lichess.org/page/rating-systems

[4] Caulfield, Tristan. Undergraduate Dissertation: Acquiring and Using Knowledge in
Computer Chess. University of Bath, Department of Computer Science, 2004. https:
//purehost.bath.ac.uk/ws/portalfiles/portal/529627/CSBU-2004-17.pdf

[5] Caulfield, Tristan, and Joanna J. Bryson. Chess by Imitation.

[6] Ezequiel Cribioli, Evolutive EigenGame: Resolviendo PCA con un algoritmo evo-
lutivo.Tesis de Licenciatura en Ciencias Matematicas, Departamento de Mateméti-
ca, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
2022. https://cms.dm.uba.ar/academico/carreras/licenciatura/tesis/2022/
Cribioli%20-%20tesis.pdf

[7] Gayen, Sutanu. Chess Endgame Classifier using Machine Learning. (2012).
https://www.cse.iitk.ac.in/users/cs365/2012/submissions/sutanug/cs365/
projects/report.pdf

[8] Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). 14. Autoencoders. Deep
learning. Adaptive computation and machine learning. Cambridge, Mass: The MIT
press. ISBN 978-0-262-03561-3.

[9] Jolliffe, I. T. (2002). Principal Component Analysis. Springer Series in Statistics. New
York: Springer-Verlag. doi:10.1007/b98835. ISBN 978-0-387-95442-4.

[10] Kapicioglu, Berk, et al. Chess2vec: learning vector representations for chess. arXiv
preprint arXiv:2011.01014 (2020). https://arxiv.org/pdf/2011.01014

[11] Maesumi, Arman. Playing chess with limited look ahead. arXiv preprint ar-
Xiv:2007.02130 (2020). https://arxiv.org/pdf/2007.02130

[12] David, Omid E., Nathan S. Netanyahu, and Lior Wolf. Deepchess: End-to-end
deep neural network for automatic learning in chess. Artificial Neural Networks and
Machine Learning-ICANN 2016: 25th International Conference on Artificial Neural
Networks, Barcelona, Spain, September 6-9, 2016, Proceedings, Part II 25. Springer
International Publishing, 2016. https://arxiv.org/pdf/1711.09667

Chau chau chauuuuuuuuuuu

33

