
Universidad de Buenos Aires
Facultad de Ciencias Exactas y Naturales

Ajedrezzinni Latentinni: autoencoders
para interpretar el espacio latente del

ajedrez

Tesis de Licenciatura en Ciencias de Datos

Julián Garbulsky

Director: Juan Pablo Pinasco

Buenos Aires, 2025

AJEDREZZINNI LATENTINNI: AUTOENCODERS PARA
INTERPRETAR EL ESPACIO LATENTE DEL AJEDREZ

En este trabajo exploramos representaciones comprimidas de posiciones de ajedrez me-
diante autoencoders, una clase de redes neuronales no supervisadas. A partir de una base
de datos pública de partidas de ajedrez, filtramos posiciones jugadas entre jugadores de
alto nivel y las representamos en formato binario (usando una variante del bitboard). En-
trenamos un autoencoder con el objetivo de reconstruir estas posiciones, y medimos la
calidad de la reconstrucción tanto con el error cuadrático medio como con una métrica
espećıfica del dominio que contabiliza cuántas casillas del tablero fueron mal reconstruidas.

Para estudiar la interpretabilidad de las representaciones latentes, aplicamos análisis de
componentes principales (PCA) y visualizamos cómo las aperturas de ajedrez, aśı como
ciertas estructuras como el enroque y los peones centrales, se reflejan en las primeras
componentes principales. Encontramos que algunas de estas caracteŕısticas estratégicas o
posicionales se correlacionan con direcciones particulares del espacio latente.

Finalmente, evaluamos la robustez del autoencoder aplicándolo a posiciones signifi-
cativamente distintas a las del entrenamiento, como las jugadas por principiantes o las
generadas artificialmente mediante simetŕıas. En ambos casos, observamos un desempeño
de reconstrucción menor, lo que sugiere que el modelo captura regularidades propias de
partidas de nivel intermedio a alto.

Palabras claves: Ajedrez, Autoencoders, Aprendizaje no supervisado, Representaciones
latentes, PCA, Interpretabilidad, Reconstrucción.

i

AJEDREZZINNI LATENTINNI: AUTOENCODERS FOR
INTERPRETING THE LATENT SPACE OF CHESS

In this work, we explore compressed vector representations of chess positions using auto-
encoders, a class of unsupervised neural networks. Our goal is twofold: to obtain a compact
encoding that captures the essential structure of a chess position, and to understand to
what extent strategic or positional features are preserved in the latent space.

We begin by preprocessing a public Lichess dataset, filtering for standard-rated games
with a minimum time control and players rated above 2100. Chess positions are encoded
using a variant of the standard bitboard representation: we represent each square of the
board using a one-hot encoding over 13 channels—one for each of the 12 piece types and
one additional channel for empty squares. This results in a 832-dimensional binary vector
for each position. This representation has the advantage of allowing direct interpretation
of the model’s outputs, which are real-valued, by choosing the most activated channel for
each square.

We train an autoencoder on a large sample of midgame positions to minimize recons-
truction error. The encoder compresses the input vectors into a lower-dimensional latent
representation, while the decoder attempts to reconstruct the original position. The mo-
del’s performance is evaluated using both the mean squared error and a domain-specific
metric based on the number of incorrectly reconstructed squares.

To study the structure of the latent space, we apply Principal Component Analysis
(PCA) to the compressed vectors and visualize the projections along the first components.
We observe that chess openings, castling maneuvers, and pawn formations often correspond
to distinguishable regions in the PCA plane, suggesting that the autoencoder has captured
meaningful chess regularities.

We further examine the model’s robustness by testing it on positions drawn from out-
of-distribution sources. These include positions from beginner-level games and artificially
transformed positions obtained via the board symmetry of vertical reflections. In both set-
tings, the model’s reconstruction error increases, reinforcing the idea that the autoencoder
learns typical patterns from high level chess and not simply the position of each single
piece.

In summary, we demonstrate that autoencoders can learn to represent and reconstruct
chess positions with high accuracy while preserving structural features in a low-dimensional
space, and we highlight how visualization and domain-specific decoding choices can en-
hance interpretability in unsupervised settings.

Keywords: Chess, Autoencoders, Unsupervised learning, Latent space, PCA, Interpreta-
bility, Reconstruction, Out-of-distribution analysis, One-hot encoding.

iii

AGRADECIMIENTOS

El primer agradecimiento es para todos. El otro d́ıa en la defensa de tesis y en los poste-
riores sanguchitos la pasé genial con todos ustedes. Disfruté mucho también el proceso de
pensar qué poner en las diapositivas para hacer réır a cada grupo de personas, con algunas
referencias escondidas involucradas. Sigo sin poder creer cuántos éramos, y me quedó claro
en el momento en que fui a buscar una porción de chocotorta y ya hab́ıan desaparecido
las dos.

También a los muchos de ustedes que me ayudaron a preparar la presentación escu-
chando ensayos y aportando ideas bueńısimas sobre cómo contar las cosas que se hicieron
en la tesis: Bruno Glecer, Massi, Pili y Nahue, Conejillos (Mateo, Lu, Maggy, Marti, Chia-
ri, Valen, Pedro Raigorodsky, Cami Pinat, Coni), Outer Wilds (Adro, Ilu, mi viejo), Bruno
Giordano, Ale, Joaco Bermejo y obviamente Juan Pablo.

Sigo con la persona más importante del proceso de la tesis: Juan Pablo Pinasco. No
solo por coparse desde el primer d́ıa a ser mi director sino también por lo bien que la
pasé en el medio pensando ideas, manijeando posibles proyectos y yéndonos por las ramas
charlando de otras cosas que nos hicieron réır. Con él nos hab́ıamos conocido en la facu
varios años atrás y en el medio ya hab́ıamos tirado ideas de posibles proyectos que combinen
aprendizaje automático y ajedrez. Me encantó finalmente haberlo hecho juntos.

El siguiente es para toda la familia. Hay miles de cosas para decir, pero hoy voy a ir
con algunas bien espećıficas. A mi viejo por hacer que me guste mucho el ajedrez desde
chiquito. A mi vieja por haberme ayudado a decorar las chocotortas que comimos después
de la defensa como las figuras 4.12 y 4.13. A Lele por ser la persona más creativa del
planeta a la hora de hacerme réır, además de por decidir escuchar mi sabio consejo sobre
la dirección en la que teńıa que girar realmente la tuerca si queŕıamos cambiar la rueda rota
del auto yendo a Tandil. Del lado de mi vieja, a Abu y el T́ıo Loco por ser las personas
que más llenan mi vida de Cindor y de anécdotas delirantes. A Vale, Mart́ın, Ludmi,
Joán y Carola por haber introducido el tereré en mi vida y ser los directos responsables
de la cantidad de litros que tomé desde que empecé la facu, y en esta ocasión a Ludmi
especialmente por haberme ayudado a elegir el t́ıtulo de la tesis. Y del lado de mi viejo a
todos por lo bien que me la hacen pasar en los viajes y lo mucho que me hacen réır todos
los d́ıas (hay una referencia escondida en esta tesis para que busquen ustedes). Pero esta
vez a algunos especialmente. A Guid́ın por ser el primero que me habló de la nueva carrera
de Ciencia de Datos que estaba por aparecer. A Tein por pasar en muy poco tiempo de
ser el primo al que le enseño ajedrez a ser el primo que me enseña ajedrez y por haber
tirado ideas copadas para la tesis desde el principio. Y a Cande por subirme la heladera.

A los Avetta no solo por venirse a Buenos Aires especialmente para la defensa, sino
también por las ganas con las que siempre quieren recibirme en San Nicolás, que toquemos
temas de Coldplay en la guitarra y que les diga qué otra cosa necesito que se pueda resolver
con la máquina de coser.

A las peronas (de la facu y de afuera) con las que más compartimos momentos o temas
que nos apasionan: A CMC por ser mis amigos de toda la vida. A Ale por la infinidad
de proyectos y actividades que hicimos juntos desde muy chiquitos. A Mati Bergerman

v

por las ganas que tiene siempre de conocer todos los detalles de cómo funcionan las cosas
y preguntar por lo que estoy haciendo hasta entenderlo en profundidad y aportar ideas
geniales. A Valen por compartir la pasión de conocer personas que hagan cosas que nos
dan mucha intriga y llenarlos a preguntas, en un episodio de Desayuno Podcast o en la
vida en general. A Bruno Glecer por ser la persona que me hace sentir que charlando
con él se puede entender cualquier cosa, y también por ser la persona con la que no
podemos hacernos chistes porque a esta altura ya se nos ocurren los mismos remates bien
espećıficos al mismo tiempo. A Massi porque al d́ıa de hoy sigo sin entender cómo hizo,
porque con los años nunca me dejó de pasar de aprender algo de matemática (cada vez
más avanzado) y en algún momento darme cuenta de “che esto es lo que me hab́ıa contado
Massi cuando estábamos haciendo el CBC”, y también es la persona con la que cuando
hago matemática mejor me hace entender en castellano qué es conceptualmente lo que
estamos haciendo. A Juli1 por ser la que me hace entender las ideas más abstractas de la
matemática manejándolas como si fueran de lo más cotidiano, y también por ser la única
persona con la que nos réımos tanto del humor más absurdo (ver Figura 0.1).

Fig. 0.1: si no te réıste no sos Juli1.

A Cami Mildiner por pasar de ser la persona a la que le cuento en qué consiste la carrera
de Matemática a ser la persona a través de quien conozco a más otras personas de la facu,
por los niveles de manija que maneja para organizar actividades sociales como Fulbo y
Conitos. Al igual que el Chino Cribioli en su tesis, agradecimiento para él y Bruno Giordano
por la manera tan única en la que nos hacemos réır. Son ellos los que estando juntos en
Córdoba me hicieron conocer muchas de las estructuras de humor que ahora me divierten
todos los d́ıas (pero bueno, igual me lo tengo que fumar). A Pedro Raigorodsky por los
altos niveles en sangre que tiene de pasión por la matemática, y por ser con quien contarnos
de un proyecto que tenemos se puede transformar automáticamente en una videollamada
todas las semanas (como lo fue con “BienAI!”). A Gabi Sac porque a pesar de ser el chico
con el que en ExpC2014 casi no llegué a cruzar una palabra, después nos fuimos enterando
de cada vez más cosas que compart́ıamos (OMA, electrónica, AwesomeMath, la carrera,
etc.) hasta terminar siendo él con quien fundamos el Taller de Ingenio, haciéndome cumplir
por primera vez mi sueño de dar un taller de matemática recreativa. A Mati Saucedo por
ser uno de los más directos responsables de que haya terminado estudiando en Exactas,
contagiando a su manera muy única su pasión por resolver problemas como profe en la
secundaria, en Exactas y como amigo, y porque al d́ıa de hoy cada vez que lo escucho
explicar algo, su manera de hacerlo sigue siendo siempre más claŕısima de lo que puedo

recordar. A Juampi De Rasis por ser de mis amigos que más me orientaron cuando entré a
la carrera de Matemática, siempre adelantándome lo más geniales que se pońıan las cosas
cuando uno sigue generalizando. A Dina por coparse tanto a hacer experimentos de f́ısica
desde que nos conocemos, ya sea haciendo malabares dentro de un avión acelerando en la
pista de despegue o juntándonos a hacer un espejo parabólico para hacer un radiotelescopio
aunque solo termine siendo una máquina de encandilarnos con el sol. A Juli3 por convencer
a Bruno de que el Outer Wilds śı me iba a gustar a pesar de ser ficción, y ponerlo en práctica
juntándonos los tres regularmente para que me vieran jugar y en el medio yo no pueda
dejar de pensar en el juego por la intriga con la que me quedaba. A Diego Fernández
Slezak porque desde que lo conoćı cuando estaba en el CBC que siempre tiene ganas de
contarme aplicaciones copadas de las cosas que él conoce y que yo estoy por aprender,
y por coparse a ser mi tutor de la carrera de Datos y la paciencia con la que me ayuda
a entender qué trámites tengo que hacer cuándo. A Dylan Fridman por compartir desde
hace tanto la manera tan estratégica de pensar cuál es el próximo paso en la investigación
que estemos haciendo (por ejemplo Proyecto Cuadrado) o cuál es el próximo acorde en
la canción que estemos componiendo. A Santi Aranguri por las ganas que tiene siempre
de pensar las cosas. A Lauti Borrovinsky por las juntadas para preparar charlas y tocar
música.

A la gente que no puedo cruzarme en el pasillo y salir sin aprender algo nuevo de
matemática o de datos: Chanu (con algún problemón y su respectiva solución elegante
involucrados), Fran Valdés (con alguna sugerencia de en qué orden at́ıpico cursar las ma-
terias involucrada), Juli4 (con algún dato de Eurovisión involucrado), Zenón (con topoloǵıa
y memes involucrados), Rocco (con ideas de estad́ıstica y maneras de organizarse bien en
la vida involucradas), Lucho Cassini (con principios filosóficos involucrados, y probable-
mente preparar otro final juntos), Lula Chechic (con neurociencia y tocar un temón de
Miranda en la guitarra involucrados), Aye y Lucas Vitali (con divulgación, grafos y comi-
da involucrados), Gasti Zabala (con datos curiosos sobre lo que sea involucrados), Pollo
(con tremendas notas en la guitarra involucradas), Pedro Sánchez Terraf (con conjuntos
y memes bizarros involucrados).

Sección Futbol: A todos los que son parte del Fulbo de los findes en el poli y a todo
el equipo de Conitos FC, por lo bien que me la hacen pasar pateando la pelota, siendo de
los mejores ejemplos de por qué a la facu me gusta llamarla “El Club”. Y ya que estamos
en tema, al Dibu por la atajada más importante de nuestra generación.

A los que me ayudaron especialmente con la tesis: Al pibe random que me mandó
un mensaje por Instagram sin conocernos pero resultó ser Feli Marelli, que además de
divertirnos en varias videollamadas durante la pandemia fue el que más me hizo tener
ganas de hacer programas de inteligencia artificial que entiendan el ajedrez (y las ideas
que hab́ıamos charlado se terminaron transformando en el disparador de esta tesis). A
Gabo Mindlin por ser el que más me contagió su pasión por los autoencoders en ese curso
de la UMA, y por recibirme con tantas ganas en su laboratorio al principio del cuatri para
poder hacerle preguntas y pedirle opiniones e ideas que fueron claves para poder hacer
esta tesis. A Hernán Grecco por la buena onda que tiene desde el d́ıa que lo conoćı, las
ganas de juntarnos en la facu a charlar sobre f́ısica, y por hacerme ver que mi tesis teńıa un
gran valor que yo desconoćıa: según él son este tipo de proyectos de interpretabilidad los
que van a hacer que varias herramientas de inteligencia artificial se terminen entendiendo
mejor que nunca. A Sofi Roitman por tipear la primera letra de esta tesis. A Pablo Mislej

por coparse a ser jurado de esta tesis y a recibirme en su oficina un tiempo antes para
conocernos y charlar de temas que nos copan a los dos.

Agradecimiento para Lichess por tener abierta y gratuita su base de datos, disponible
para que los que queremos hacer proyectos que involucran partidas de ajedrez podamos
hacerlos realidad.

Hay tantas personas a las que quiero mencionar en los agradecimientos que muy pro-
bablemente me esté olvidando de varios de ustedes sin querer, aśı que el último agrade-
cimiento va para todos ustedes (pero si sos uno de ellos escribime y te mando el tuyo
personalizado).

Índice general

1.. Introducción . 1
1.1. Organización de la tesis . 2

2.. Preliminares . 3
2.1. Autoencoders . 3
2.2. Interpretabilidad y Análisis de Componentes Principales (PCA) 4
2.3. Ajedrez . 5

3.. Metodoloǵıa . 11
3.1. Codificaciones de tableros de ajedrez . 11
3.2. Herramientas . 13

3.2.1. Pipeline de desarrollo . 14

4.. Resultados . 17
4.1. Métricas de reconstrucción . 17
4.2. Estructura del espacio latente . 18

4.2.1. Distribución por aperturas . 18
4.2.2. Significado de las componentes . 21

4.3. Evaluación en posiciones fuera de distribución 27
4.3.1. Partidas de jugadores con bajo Elo 27
4.3.2. Posiciones reflejadas verticalmente 28
4.3.3. Posiciones de otras etapas de la partida 30

5.. Conclusiones . 31

ix

1. INTRODUCCIÓN

Hace un tiempo conoćı los autoencoders y desde el primer instante supe que queŕıa
hacer algún proyecto en el que estén invloucrados. Esta tesis es ese proyecto.

Mi introducción a los autoencoders fue el video [1], en el que los usaban para describir
fotos de caras de personas en pocas variables. Me sorprendió que un método tan simple
pueda lograr algo tan abstracto como representar una cara, no como una lista de ṕıxeles y
sus activaciones, sino con variables como largo del pelo, inclinación de la cabeza, género,
etc.

Cuando pensamos en que la tesis fuera de la forma “entrenemos un autoencoder con
algo en particular y veamos cómo aprende conceptos” no fue nada dif́ıcil decidirnos porque
ese algo en particular fueran posiciones de ajedrez.

El objetivo principal de esta tesis es explorar cómo un modelo de autoencoder puede
representar posiciones de ajedrez en un espacio latente de baja dimensión (estos conceptos,
y otros que mencionemos en la introducción, están definidos en detalle más adelante), y qué
tipo de información semántica logra capturar esta representación. Para eso, construimos
y entrenamos un autoencoder sobre un conjunto de datos compuesto por posiciones reales
extráıdas de partidas jugadas en ĺınea, y luego analizamos su comportamiento mediante
distintas herramientas estad́ısticas y visuales.

Generamos el conjunto de datos a partir de una porción de la base pública de partidas
de Lichess correspondiente a mayo de 2019. Filtramos exclusivamente las partidas estándar
(ajedrez clásico) en las que ambos jugadores tuvieran al menos 2100 puntos de Elo y el
ritmo de juego fuera de al menos 180 segundos por jugador. De estas partidas extraji-
mos posiciones intermedias, y representamos cada una como un vector binario mediante
codificación one-hot de un bitboard extendido de 13 canales, uno por cada tipo de pieza
(seis por color) más uno adicional para representar las casillas vaćıas. Cada posición quedó
representada como un vector binario de dimensión 832 (13 × 64). Además, eliminamos
posiciones duplicadas para evitar fuga de datos (data leakage) y dividimos los datos en
conjuntos de entrenamiento y testeo.

Construimos un modelo de autoencoder entrenado para minimizar el error de recons-
trucción entre la entrada y la salida, pasando en el medio por un cuello de botella de
dimensión más baja (20 espećıficamente). Una vez entrenado el modelo, evaluamos la cali-
dad de la reconstrucción tanto cuantitativamente usando el error cuadrático medio (ECM),
como estructuralmente calculando el número de casillas mal reconstruidas en cada tablero,
es decir, aquellas donde la pieza reconstruida no coincide con la original.

Posteriormente, analizamos la estructura del espacio latente aprendido. Para esto, apli-
camos análisis de componentes principales (PCA) sobre las representaciones latentes de
un conjunto de posiciones no vistas por el modelo, y visualizamos el espacio proyectándolo
a planos generados por dos componentes principales. Primero analizamos qué proporción
de la varianza explicaban las primeras componentes, para evaluar qué tan comprimible
era el espacio latente. Luego, generamos visualizaciones coloreadas por distintos atributos
semánticos de las posiciones: apertura, ubicación de los reyes, posición de peones centra-
les, entre otros. Esto nos permitió interpretar el significado de distintas direcciones del

1

2 1. Introducción

espacio latente. Por ejemplo, observamos que la primera componente estaba fuertemente
correlacionada con el estado de los enroques de los jugadores, y que otras componentes
parećıan estar relacionadas con la estructura de peones centrales.

También evaluamos el desempeño del modelo ante posiciones que difeŕıan notablemente
de las del conjunto de entrenamiento. Para ello, aplicamos el mismo pipeline de evaluación
sobre un conjunto de posiciones jugadas por jugadores de Elo bajo (a lo sumo 1000)
con poco tiempo en el reloj (a lo sumo 180 segundos). Comprobamos que el error de
reconstrucción, tanto en términos de ECM como de número de casillas mal reconstruidas,
era más alto en este conjunto, como era de esperar. Esto sugiere que el autoencoder no
aprendió a respresentar posiciones guardando la información de la ubicación de cada pieza,
sino captando regularidades propias de partidas de nivel intermedio o alto, que no siempre
se respetan en partidas de jugadores principiantes.

Por último, exploramos la simetŕıa “blancas-negras” del espacio latente evaluando la
reconstrucción de posiciones reflejadas verticalmente, con colores de piezas intercambiados.
Observamos que el error de reconstrucción de estas versiones reflejadas también es mayor
que el de las posiciones originales, lo cual indica que, aunque simétricas desde un punto
de vista geométrico, estas posiciones no son estad́ısticamente equivalentes en el corpus de
entrenamiento. Esto nos proporcionó evidencia emṕırica de que la estad́ıstica de posiciones
en partidas reales de ajedrez no es completamente simétrica bajo reflexiones verticales.

En resumen, este trabajo no sólo mostró que es posible representar posiciones de aje-
drez de forma comprimida preservando buena parte de la información, sino que también
evidenció que el espacio latente aprendido refleja propiedades semánticas del juego y res-
ponde de manera coherente ante cambios estructurales o contextuales. Esta tesis cae en la
intersección entre aprendizaje no supervisado y juegos complejos, y propone herramien-
tas para visualizar y entender el contenido de modelos entrenados en dominios ricos y
estructurados como el ajedrez.

1.1. Organización de la tesis

En el desarrollo de esta tesis abordamos cada una de esas etapas. El trabajo se estruc-
tura de la siguiente manera:

En el caṕıtulo 2 se introducen los conceptos necesarios para comprender el trabajo,
inclúıdos autoencoders, análisis de componentes principales y nociones básicas de ajedrez.
En el caṕıtulo 3 se describe la metodoloǵıa seguida, incluyendo la codificación númerica
de posiciones de ajedrez utilizada, las herramientas de programación implementadas y el
pipeline de desarrollo. En el caṕıtulo 4 se presentan los resultados obtenidos, con visuali-
zaciones e interpretabilidad sobre el espacio latente aprendido. Finalmente, en el caṕıtulo
5 se discuten las conclusiones y posibles extensiones del trabajo.

2. PRELIMINARES

2.1. Autoencoders

Esta es una explicación informal e intuitiva sobre qué son los autoencoders a través de
un ejemplo. Para una lectura más detallada ver [8].

Imaginemos que tenemos un conjunto de fotos de caras de personas. Una foto es algo
que tiene mucha información: para cada ṕıxel que contiene hay un valor de activación
entre 0 (negro) y 1 (blanco). Pero si uno le pide a una persona que describa una foto de
una cara, lo va a hacer muy bien diciendo muy pocas cosas (por ejemplo el largo del pelo,
el género, la distancia entre los ojos, etc). ¿Se puede hacer un programa que aprenda a
describir en pocas variables una foto de una cara? La respuesta es śı, y esta es una manera.

Hacemos una red neuronal que reciba como entrada un vector de Rm (en nuestro
ejemplo, un vector formado por las activaciones de los m ṕıxeles de una foto), que tenga
una capa oculta de n neuronas con n mucho más chico que m, y que la salida también
tenga tamaño m como la entrada. Es decir, esta red neuronal, haga lo que haga, recibe
fotos como entrada y genera fotos en la salida, como muestra el esquema e la figra 2.1.

Fig. 2.1: Esquema de red neuronal que recibe y devuelve fotos.

¿Qué queremos que aprenda la red? Que cada vez que recibe en la entrada una foto de
una cara genere en la salida exactamente la misma foto (o una lo más parecida posible,
como se detalla más adelante). Esto se puede hacer con muchas fotos de caras como
conjunto de entrenamiento (aprendizaje supervisado). La idea fundamental de hacer todo
esto es que cuando la red neuronal lo aprende, inevitablemente está logrando comprimir
toda la información de la foto de una cara en solo los n números de la capa del medio.
Con esto conseguimos lo que queŕıamos, que era poder describir una foto entera de una
cara con poca información.

Si llamamos X = Rm al espacio de entrada y de salida del autoencoder y Z = Rn

al espacio correspondiente a la capa oculta del medio, entonces lo que estamos buscando
son dos funciones, cada una de las cuales vive en una familia parametrizada: una función
codificadora Eϕ : X → Z (parametrizada por el conjunto ϕ de coeficientes de una red
neuronal) y una decodificadora Dθ : Z → X (parametrizada por el conjunto θ de co-
eficientes de otra red neuronal). En este trabajo ambas familias de funciones van a ser
redes neuronales con arquitecturas espećıficas. Si x ∈ X, a z = Eϕ(x) ∈ Z lo llamamos la

3

4 2. Preliminares

codificación de x, y a x′ = Dθ(z) ∈ X lo llamamos la decodificación de z. Al espacio Z lo
llamamos espacio latente.

Cuando se entrena al autoencoder lo que se busca es que la salida sea idéntica a la
entrada. Para esto, se busca que se minimice tanto como sea posible una función que mide
la diferencia entre ellas, generalmente llamada función de pérdida o error . Una de las más
comunes, que es la que vamos a usar en este trabajo es

L(ϕ, θ) =
1

N

N∑
i=1

ECM(x(i), x′(i)) (2.1)

donde {x(1), ..., x(N)} ⊂ X es el conjunto de entrenamiento (y N su tamaño), x′(i) =
Dθ(Eϕ(x

(i))), y ECM es el error cuadrático medio, definido como

ECM(x, y) =
1

m

m∑
j=1

(xj − yj)
2 (2.2)

para x, y ∈ Rm. Lo que buscamos es

argmı́n
ϕ, θ

L(ϕ, θ) (2.3)

La manera en la que estamos haciendo una reducción de dimensión es la siguiente.
Nuestros datos, que pertenecen a X = Rm, provienen de alguna distribución desconocida.
Esta distribución puede tener correlaciones entre las distintas coordenadas, por lo cual
es esperable que el autoencoder pueda lograr comprimir toda la información relevante en
solamente las n coordenadas del espacio latente Z.

Teniendo esto en mente, ahora el autoencoder tiene otro uso: si nos olvidamos de la
entrada y de la función codificadora y nos quedamos solo con el espacio latente, la función
decodificadora y la salida, podemos a partir de puntos arbitrarios z ∈ Z calcular sus imáge-
nes en X a través de Dθ y conseguir aśı datos sintéticos que siguen la misma distribución
que los reales (o lo más parecida posible, según qué tan buena sea la reconstrucción).

2.2. Interpretabilidad y Análisis de Componentes Principales (PCA)

El objetivo de esta tesis es hacer interpretabilidad en el espacio latente de un autoen-
coder que va a ser entrenado con posiciones de ajedrez (detalles en la sección 3), es decir,
buscar entender el significado de distintas regiones del espacio en el que se codifican los
datos.

Para analizar el espacio latente nos conviene aplicar la técnica de análisis de compo-
nentes principales (PCA), ver [6], [9] para una descripción técnica. Esencialmente, PCA
calcula nuevos ejes en el espacio latente que son ortogonales y se ordenan de manera
decreciente de acuerdo a la varianza de los datos que explican.

A continuación se describen los pasos necesarios para aplicar PCA a un conjunto de
datos pertenecientes al espacio latente. Sea A ∈ Rk×n una matriz de datos, donde cada
una de las k filas es una muestra y cada una de las n columnas una variable del espacio
latente.

2.3. Ajedrez 5

1. Estandarización de los datos: centrar y escalar cada variable. Esto implica restar
la media y dividir por el desv́ıo estándar de cada columna:

Ãij =
Aij − µj

σj

donde µj =
1
n

∑n
i=1Aij y σj es el desv́ıo estándar de la columna j.

2. Cálculo de la matriz de covarianza: una vez que los datos están centrados y
escalados, se calcula la matriz de covarianza:

Σ =
ÃT Ã

k − 1

Esta matriz captura las correlaciones lineales entre variables.

3. Descomposición espectral (autovalores y autovectores): se calculan los auto-
valores λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 y sus correspondientes autovectores v1, v2, . . . , vn de
la matriz Σ. Los autovectores representan las componentes principales del espacio
de datos y los autovalores indican cuánta varianza explica cada una.

4. Selección de componentes: se eligen algunos autovectores de los hallados en el
paso anterior. Esto define una base ortonormal en un subespacio menor dimensión

5. Proyección de los datos: se proyectan todos los datos al subespacio de menor
dimensión para obtener una descripción del espacio en menos variables.

En lo que sigue de esta tesis la selección de componentes va a ser hecha siempre con
dos vectores, para poder visualizar fácilmente la información.

2.3. Ajedrez

Esta sección consiste en una explicación de los conceptos básicos de ajedrez necesarios
para poder entender los detalles de esta tesis.

El ajedrez es un juego de estrategia de información completa en el que dos jugadores se
enfrentan sobre un tablero de 8× 8 casillas, alternando sus movimientos por turnos. Cada
jugador controla un conjunto de dieciséis piezas, entre las cuales hay seis tipos distintos
(ver figura 2.2). Las piezas son el rey, la dama (también llamada reina), dos torres, dos
alfiles, dos caballos y ocho peones.

Fig. 2.2: Tipos de piezas de ajedrez. De izquierda a derecha: rey, dama, torre, alfil, caballo, peón.

Las piezas blancas se enfrentan a las piezas negras, y el jugador que controla las blancas
mueve primero, partiendo siempre desde la misma posición inicial (ver figura 2.3).

6 2. Preliminares

Fig. 2.3: Tablero de ajedrez con las piezas en su configuración inicial.

Cada tipo de pieza tiene reglas espećıficas sobre cómo puede desplazarse por el tablero.
Por ejemplo, los caballos se mueven en forma de “L”, las torres en ĺınea recta horizontal o
vertical, los alfiles en diagonal, y la dama puede moverse en cualquier dirección (vertical,
horizontal y diagonal). Los peones avanzan una casilla hacia adelante (o dos si es su primer
movimiento y el jugador lo desea), y capturan en diagonal. Sólo se permite mover piezas
propias, y en caso de que una pieza del adversario ocupe una casilla alcanzable, puede
ser capturada al mover una pieza propia a esa casilla. (Ver figura 2.9). El ganador es el
primero en capturar el rey del oponente.

Fig. 2.4: Peón Fig. 2.5: Caballo Fig. 2.6: Alfil Fig. 2.7: Torre Fig. 2.8: Dama

Fig. 2.9: Posición de ajedrez con los posibles movimientos de algunas piezas blancas (marcadas con
fondo verde) y puntos que indican las posibles casillas de destino.

Una de las jugadas especiales del juego es el enroque, que consiste en un movimiento
simultáneo del rey y una de las torres, en el que el rey se desplaza dos casillas hacia la
torre y esta salta por encima del rey, colocándose justo al lado opuesto. El enroque está
sujeto a varias condiciones, entre ellas, que no haya ninguna pieza ocupando alguna casilla
que se encuentre en el camino entre el rey y la torre (ver figura 2.13).

2.3. Ajedrez 7

Fig. 2.10: Blancas justo antes
de enrocar.

Fig. 2.11: Blancas justo des-
pués de jugar enro-
que corto (lado dere-
cho).

Fig. 2.12: Blancas justo des-
pués de jugar enro-
que largo (lado iz-
quierdo).

Fig. 2.13: Ejemplo de enroque.

Para describir las posiciones en ajedrez, se utiliza una notación estandarizada conocida
como notación algebraica. En ella, cada casilla del tablero se identifica mediante una letra
(de la a a la h) que indica la columna, siendo a la de la izquierda desde el punto de vista
del jugador blanco, y un número (del 1 al 8) que indica la fila. Por convención, las blancas
ocupan inicialmente las filas 1 y 2, y las negras las filas 7 y 8. Para indicar qué pieza ocupa
una casilla, se antepone una letra mayúscula que representa la inicial del tipo de pieza (K
para rey, Q para dama, R para torre, B para alfil, N para caballo y P para peón). Si la pieza
es negra, se respresenta con la misma letra pero en minúscula. Por ejemplo, Nf3 indica
que hay un caballo blanco en la casilla f3, mientras que nf3 indica que hay un caballo
negro en esa misma posición. La notación usada para describir jugadas en una partida es
similar.

Al comienzo de una partida, existen patrones de movimientos frecuentes que se han
estudiado extensamente y que reciben el nombre de aperturas o defensas (ver ejemplos
en la figura 2.18). Estas secuencias iniciales buscan posiciones convenientes para el juego,
en las que se persiguen conceptos estratégicos como el desarrollo eficiente de las piezas, el
control del centro del tablero o la preparación el enroque. Se las suele clasificar en abiertas,
semiabiertas, cerradas y semicerradas según el movimiento de los peones centrales, que
son los que comienzan en las columnas d y e.

Fig. 2.14: Ruy López:
e4, e5, Nf3,
Nc6, Bb5.

Fig. 2.15: Siciliana: e4,
c5.

Fig. 2.16: Defensa fran-
cesa: e4, e6.

Fig. 2.17: India de rey:
d4, Nf6, c4,
g6.

Fig. 2.18: Ejemplos de aperturas.

8 2. Preliminares

A lo largo de esta tesis se trabajará con partidas extráıdas de la base de datos pública
de Lichess, un servidor de ajedrez libre y popular. Las partidas alĺı se registran en formato
PGN (Portable Game Notation), una notación de texto que incluye entre otras cosas el
nombre de los jugadores, el tiempo de juego, la fecha, el resultado, y la secuencia completa
de jugadas. A continuación se muestra un ejemplo de partida extráıda de dicha base de
datos:

[Event "casual blitz game"]

[Site "https://lichess.org/HMXmrrQe"]

[Date "2024.12.31"]

[Round "-"]

[White "teoccc"]

[Black "JuliGarbulsky"]

[Result "1-0"]

[GameId "HMXmrrQe"]

[UTCDate "2024.12.31"]

[UTCTime "23:30:45"]

[WhiteElo "1592"]

[BlackElo "1487"]

[Variant "Standard"]

[TimeControl "300+0"]

[ECO "C62"]

[Opening "Ruy Lopez: Steinitz Defense"]

[Termination "Time forfeit"]

1. e4 e5 2. Nf3 Nc6 3. Bb5 d6 4. d4 exd4 5. Nxd4 Bd7 6. Nxc6 Bxc6

7. Bxc6+ bxc6 8. O-O Rb8 9. Nc3 g6 10. b3 Bg7 11. Bb2 Nf6 12. Re1 Nd7

13. Qf3 Ne5 14. Qe2 O-O 15. f4 Nd7 16. e5 Re8 17. Qc4 Rb6

18. exd6 cxd6 19. Rxe8+ Qxe8 20. Rf1 Qe3+ 21. Kh1 Qc5 22. Qxc5 Nxc5

23. Nd1 Rb7 24. Re1 Bxb2 25. Nxb2 f5 26. Re8+ Kf7 27. Rh8 Kg7

28. Re8 Kf7 29. Re2 Re7 30. Rxe7+ Kxe7 31. g3 Ne4 32. c4 d5

33. cxd5 cxd5 34. Kg2 Kd6 35. Kf3 Kc5 36. Nd3+ Kd4 37. Ne5 Kc5

38. Ke3 d4+ 39. Kd3 Kd5 40. Nc4 Nf2+ 41. Ke2 Ng4 42. h3 Ne3

43. Nxe3+ dxe3 44. Kxe3 a5 45. g4 h6 46. gxf5 gxf5 47. Kd3 Ke6

48. Kc4 Kd6 49. b4 Kc6 50. b5+ Kb7 51. a4 Ka7 52. Kc5 Kb7 53. b6 h5

54. h4 Kb8 55. Kc6 Ka8 56. Kb5 Kb8 57. Kxa5 Kc8 58. Ka6 Kb8 59. a5 Ka8

60. b7+ Kb8 61. Kb5 Kc7 62. a6 Kb8 63. Kc6 Ka7 64. Kc7 1-0

Cada ĺınea con corchetes contiene metadatos de la partida, y la secuencia de jugadas
aparece luego, indicando qué pieza se mueve y a qué casilla.

Para este trabajo los metadatos relevantes van a ser WhiteElo y BlackElo (los puntajes
que describen los niveles de habilidad de los jugadores [3]), TimeControl (que contiene la

2.3. Ajedrez 9

información del tiempo total con el que cuentan los jugadores para la partida) y Opening
(que contiene el nombre correspondiente a la apertura o defensa jugada).

10 2. Preliminares

3. METODOLOGÍA

3.1. Codificaciones de tableros de ajedrez

Dado que queremos hacer que la entrada y la salida de nuestra red neuronal sean
posiciones de ajedrez, el primer paso es pensar cómo codificar una posición de ajedrez
como un vector de números. Existen múltiples maneras de hacerlo, pero en este trabajo
nos enfocamos en la más usada, llamada bitboard (ver por ejemplo [12], [4], [5], [11]), y le
hacemos modificaciones para conseguir otra que llamamos one hot B (definida más ade-
lante). Para otras posibles codificaciones ver [7], [10]. Aclaración: no confundir el término
“codificación” refiriéndose a la manera de representar una posición como un vector de
números con el mismo término usado para hablar de dónde cae en el espacio latente un
punto a través de la función codificadora (sección 2.1). La ambigüedad está resuelta por
el contexto en el que se usa la palabra.

La primera codificación, ampliamente utilizada en trabajos relacionados con apren-
dizaje automático aplicado al ajedrez, es la conocida como bitboard. Esta representación
consiste en construir un vector de longitud 12 × 64 = 768, resultado de concatenar 12
vectores de 64 entradas cada uno. Cada uno de esos 12 vectores corresponde a uno de
los 12 tipos posibles de pieza (6 tipos por cada color: rey, dama, torre, alfil, caballo y
peón). La i-ésima coordenada de uno de estos vectores vale 1 si en la casilla i del tablero
se encuentra el tipo de pieza correspondiente al canal en cuestión, y 0 en caso contrario.
Aśı, por ejemplo, si hay un caballo blanco en la casilla f3, el canal correspondiente a los
caballos blancos tendrá un 1 en la posición f3, y el resto de los canales tendrá un 0 en esa
posición. Esta representación es esparsa, ya que un tablero puede contener como máximo
32 piezas, por lo que a lo sumo 32 de las 768 coordenadas son iguales a 1; el resto son ceros.
También es redundante, ya que si una casilla contiene una pieza, entonces necesariamente
todos los otros canales tienen un 0 en esa posición.

Una limitación de esta codificación surge al utilizarla como salida de una red neuronal.
Dado que las activaciones de las neuronas suelen tomar valores reales entre 0 y 1, hay que
diseñar un procedimiento para interpretar el resultado como una posición de ajedrez. Una
manera posible es definir qué pieza que hay en la i-ésima casilla como el canal que tiene
mayor activación en ella, pero esto daŕıa lugar a un tablero que tiene piezas en todas sus
casillas (no tiene ninguna vaćıa). Esto último se puede solucionar definiendo un umbral
que una activación debe superar para que la casilla no se considere vaćıa (Ejemplo en la
figura 3.4).

11

12 3. Metodoloǵıa

Fig. 3.1: Umbral alto. Fig. 3.2: Umbral medio. Fig. 3.3: Umbral bajo.

Fig. 3.4: Posición generada por una salida hipotética de un autoencoder, reconstruida para distintos
umbrales.

Si bien ese procedimiento cumple lo que necesitamos, tiene un umbral arbitrario, que
su valor puede cambiar en la reconstrucción de una posición.

Por este motivo decidimos utilizar una codificación alternativa, que denominamos one
hot B 1, y que se basa en una variante directa del bitboard. En lugar de tener 12 canales
(uno por tipo de pieza), agregamos un canal adicional que indica si una casilla está vaćıa.
Aśı, el tablero se representa con 13 × 64 = 832 coordenadas. Al igual que antes, cada
uno de los 13 vectores de 64 posiciones representa un canal asociado a un tipo de pieza o
al estado “vaćıo”. Para cada casilla del tablero, exactamente una de las 13 coordenadas
correspondientes vale 1 y las demás valen 0, indicando el contenido de la casilla. Es decir,
cada casilla del tablero se representa como un vector one hot de dimensión 13. Esta repre-
sentación, aunque también redundante (ya que el canal de casillas vaćıas puede inferirse
a partir de los demás), tiene la ventaja de permitir una interpretación directa de la salida
de la red neuronal: basta con tomar, para cada casilla, el canal con mayor activación y
asignar a esa casilla el contenido correspondiente. Este mecanismo evita el problema del
umbral y garantiza que cada casilla tenga una única interpretación.

Es importante mencionar que en algunos trabajos la representación bitboard también
es llamada one hot (ver por ejemplo [12]), lo cual puede llevar a confusión. En este trabajo
vamos a usar solamente one hot B, refiriéndonos siempre a la codificación que utiliza 13
canales y garantiza que cada casilla esté representada por un único 1 entre 13 opciones
posibles.

A modo de ejemplo, en la figura 3.5 se puede observar la representación one hot B de
una posición.

1 La llamo one hot Bergerman, que es el apellido de mi amigo al que se le ocurrió esta codificación
mientras comı́amos una pizza (gracias Mati!).

3.2. Herramientas 13

Fig. 3.5: Ejemplo de una posición de ajedrez y su codificación one hot B.

A modo de observación, este manera de reconstruir posiciones a partir de un vector
numérico podŕıa dar lugar a tableros con piezas que formen una posición que no sea válida
en el ajedrez (por ejemplo, una que tenga dos reyes blancos).

Esta elección de codificación fue fundamental para poder reconstruir tableros de ma-
nera coherente a partir de la salida del autoencoder, y constituye uno de los aspectos clave
del diseño metodológico de este trabajo.

3.2. Herramientas

Para el desarrollo de este trabajo usamos un conjunto de herramientas de software
que permitieron la implementación, entrenamiento y análisis de modelos de autoencoders
aplicados a posiciones de ajedrez. Estas fueron las principales:

Lenguaje de programación: Python, en el IDE Spyder de Anaconda. Espećıficamente:
Python 3.12.2 64-bit — Qt 5.15.2 — PyQt5 5.15.10 — macOS 13.4 (arm64), y
Spyder 5.5.1. Elegimos Python por su amplia adopción en la comunidad cient́ıfica
y de aprendizaje automático, y por su ecosistema de libreŕıas espećıficas para cada
etapa del trabajo.

Manipulación de datos: NumPy versión 1.26.4. NumPy fue fundamental para repre-
sentar y transformar datos en vectores y matrices, incluyendo las codificaciones de
los tableros.

Ajedrez: python-chess (Versión 1.11.2). La libreŕıa python-chess la usamos para ma-
nipular posiciones en notación FEN, generar tableros y convertir entre representa-
ciones del juego y estructuras numéricas. Fue central para implementar las funciones
de codificación y decodificación de posiciones.

Redes neuronales: TensorFlow (2.19.0) y Keras. Para definir, entrenar y evaluar los
autoencoders usamos TensorFlow junto con su interfaz de alto nivel Keras. Keras

14 3. Metodoloǵıa

permitió una implementación clara y modular de las redes, funciones de activación
y optimización, y métricas de reconstrucción.

Visualización: Matplotlib (versión 3.9.2). La usamos para generar los gráficos.

Conjunto de datos: Lichess. Usamos datos públicos de partidas provenientes de la
base de datos de Lichess [2] bajo la licencia Creative Commons CC0 license. Las
partidas las filtramos según criterios de tiempo y nivel de los jugadores (ver Sección
3.2.1), para su posterior codificación.

Estas herramientas nos permitieron implementar de forma eficiente un pipeline com-
pleto, desde la preparación de datos hasta la visualización de resultados, en un entorno
abierto, reproducible y de bajo costo computacional.

3.2.1. Pipeline de desarrollo

En esta sección describimos el pipeline completo de desarrollo, dividido en etapas:
recolección y preprocesamiento de datos, codificación de las posiciones, arquitectura del
autoencoder y entrenamiento del modelo.

Recolección y filtrado de datos

Los datos fueron descargados de la base de datos abierta de Lichess, espećıficamente
del archivo que contiene todas las partidas jugadas durante mayo de 2019. Este archivo
contiene más de 35 millones de partidas, muchas de las cuales no son útiles para nuestro
análisis: algunas fueron jugadas por principiantes (jugadores de bajo Elo) y otras con poco
tiempo en el reloj (partidas tipo bullet). Este tipo de partidas suele tener “ruido” y no
tantos patrones propios del ajedrez, por ejemplo, errores groseros por apuros de tiempo o
falta de experiencia.

Para enfocarnos en partidas de mayor calidad, filtramos el dataset conservando solo
aquellas en las que ambos jugadores tienen un Elo de al menos 2100 y donde el tiempo
inicial en el reloj es de al menos 180 segundos por jugador. Luego del filtrado, nos quedamos
con aproximadamente medio millón de partidas.

Selección de posiciones

Cada partida de ajedrez contiene varias posiciones (una por cada jugada), pero de-
cidimos seleccionar solo una por partida para el entrenamiento del modelo. Elegimos la
posición resultante luego de que ambos jugadores hayan realizado 10 jugadas (es decir,
tras 20 movimientos en total), siempre que la partida no haya terminado antes. Este punto
de la partida representa un buen equilibrio: por un lado, ya se hicieron suficientes jugadas
como para sea poco probable que la posición también haya sido alcanzada en otra partida
de la base de datos; y por otro lado, la distribución de las piezas todav́ıa es más organizada
que en etapas más avanzadas del juego.

De este modo, seleccionamos 100.000 posiciones. Luego, eliminamos las posiciones re-
petidas para evitar data leakage entre los conjuntos de entrenamiento y validación. Esto
nos dejó un total cercano a 90.000 posiciones únicas.

3.2. Herramientas 15

Codificación de las posiciones

Cada posición fue representada como un vector usando la codificación que vamos a
llamarone hot B, (ver sección 3.1) debido a su simplicidad y capacidad de reconstrucción
de posiciones a partir de vectores con valores no discretos.

Arquitectura del autoencoder

La arquitectura del autoencoder fue diseñada como una red neuronal densa y simétrica
respecto de la capa central. Fijadas las dimensiones de la entrada y de la salida (que
coinciden entre ellas y a su vez con la del vector de la codificación) y la cantidad de
neuronas en la capa latente, construimos el codificador colocando capas ocultas cuyos
tamaños se reducen progresivamente, a la mitad del anterior, hasta alcanzar el de la
dimensión latente. Luego, el decodificador repite esta estructura en orden inverso. Por
ejemplo, para pasar de 832 valores en la entrada a 20 neuronas en la capa latente, usamos
capas ocultas de tamaños 416, 208, 104, 52, y 26.

Todas las capas son densas (totalmente conectadas), con función de activación ReLU,
excepto la última capa del codificador y la última del decodificador, donde se utiliza la fun-
ción sigmoide. Esto permite obtener salidas acotadas entre 0 y 1, lo cual es deseable dado
que las entradas están compuestas sólo por ceros y unos, y que puede resultar conveniente
que el espacio latente sea acotado.

Entrenamiento del modelo

El conjunto de 90.000 posiciones fue dividido aleatoriamente en un conjunto de entre-
namiento (85%) y uno de validación (15%). Aunque el autoencoder se entrena de forma
supervisada (entrada y salida son iguales), el objetivo es que aprenda una representación
latente significativa de los datos (no supervisada).

El entrenamiento se realizó con Keras, usando el optimizador Adam, un tamaño de
batch de 256 y la métrica de error cuadrático medio. Para elegir la cantidad de épocas
de entrenamiento, analizamos la evolución del error en función de la cantidad de epochs,
utilizando como referencia un autoencoder con codificación one hot B y 20 neuronas
latentes. En la figura 3.6 se observa que el error en el conjunto de validación se estabiliza
alrededor de las 125 épocas, por lo que esta cantidad se adoptó como valor fijo para todos
los entrenamientos posteriores.

Elección de la dimensión latente

Con el pipeline definido, exploramos distintos valores posibles para la cantidad de
neuronas en la capa latente. Existe un compromiso entre fidelidad de reconstrucción y
capacidad de compresión: pocas neuronas pueden no ser suficientes para representar la
información, mientras que muchas permiten reconstruir bien las entradas pero sin lograr
una reducción significativa de la dimensionalidad.

Para evaluar este balance, entrenamos modelos con diferentes tamaños de la capa laten-
te y comparamos su error de reconstrucción (ver figura 3.7). Realizamos esta comparación
para la codificación one hot B. En función de los resultados, seleccionamos una dimensión
latente de 20 neuronas como compromiso adecuado.

16 3. Metodoloǵıa

Fig. 3.6: Error (ECM) en el conjunto de entrenamiento y de validación del autoencoder en función
de la cantidad de épocas.

Fig. 3.7: Error (ECM) en conjuntos de entrenamiento y de validación del autoencoder en función
de la cantidad de neuronas latentes.

Evaluación final

Finalmente, evaluamos el modelo ya entrenado sobre un conjunto de testeo indepen-
diente (no utilizado ni en entrenamiento ni en validación), proveniente de las 500 mil
posiciones ya filtradas por calidad de juego. Este conjunto contiene aproximadamente
80.000 posiciones y nos permite estimar la capacidad real del autoencoder para generali-
zar a datos nuevos. Como métricas, utilizamos por un lado, nuevamente el error cuadrático
medio, y por otro lado, la fracción de casillas del tablero mal reconstruidas (ver sección
4.1).

4. RESULTADOS

En este caṕıtulo presentamos los resultados obtenidos con el autoencoder entrenado
para representar posiciones de ajedrez. Dividimos los análisis en tres secciones: primero
evaluamos la capacidad de reconstrucción del modelo, luego exploramos la estructura del
espacio latente en busca de interpretabilidad, y finalmente analizamos el desempeño del
modelo ante posiciones que se alejan de la distribución del entrenamiento.

4.1. Métricas de reconstrucción

Evaluamos la calidad de las reconstrucciones utilizando dos métricas distintas sobre el
conjunto de testeo:

Error cuadrático medio (ECM), ver ecuación (2.2).

Número de casillas mal reconstruidas (NCMR): dada una salida del autoencoder,
reconstruimos la posición de ajedrez correspondiente con el procediminto definido
en la sección 3.1. Consideramos que una casilla está mal reconstruida si su estado no
coincide con el de la posición original. Calculamos entonces el número de casillas mal
reconstruidas sobre un conjunto de posiciones y tomamos el promedio. Se pueden
ver ejemplos de esta métrica en la figura 4.7.

Ambas métricas reflejan distintas formas de error: mientras que el ECM captura errores
pequeños en la representación numérica, la segunda métrica es más estricta desde el punto
de vista ajedrećıstico y da una mejor intuición de qué tan bien reconstruida está la posición.

Los resultados obtenidos en el conjunto de testeo fueron:

ECM: 0.01466.

NCMR: 7.55 (calculado con 1.000 posiciones de las del conjunto de testeo, para
mayor velocidad computacional).

17

18 4. Resultados

Fig. 4.1: Posición original 1. Fig. 4.2: Posición original 2. Fig. 4.3: Posición original 3.

Fig. 4.4: Posición reconstrui-
da 1 (8 casillas inco-
rrectas).

Fig. 4.5: Posición reconstrui-
da 2 (3 casillas inco-
rrectas).

Fig. 4.6: Posición reconstrui-
da 3 (16 casillas in-
correctas).

Fig. 4.7: Ejemplos de posiciones de ajedrez originales y sus respectivas reconstrucciones.

4.2. Estructura del espacio latente

Para estudiar la estructura interna del espacio latente generado por el encoder, aplica-
mos Análisis de Componentes Principales sobre las codificaciones del conjunto de testeo.
Esta técnica permite proyectar los vectores latentes en componentes ortogonales ordenadas
según la varianza que explican.

El gráfico de varianza acumulada indica que una fracción importante de la varianza
total puede explicarse con pocas componentes principales (figura 4.8). Las primeras tres
componentes explican el 52% de la varianza total, y las primeras nueve el 94%.

Lo que sigue es hacer análisis de interpretabilidad para buscar si las componentes
principales tienen significados espećıficos para las posiciones de ajedrez que describen.

4.2.1. Distribución por aperturas

Proyectamos las posiciones sobre las dos primeras componentes principales y colorea-
mos los puntos según la apertura jugada en la partida a la que pertenece cada una. La
información de la apertura jugada está incluida en la base de datos de Lichess.

Observamos una cierta separación entre aperturas, lo que sugiere que el modelo ha
captado aspectos distintivos del tipo de juego generado por distintas ĺıneas de apertura
(figura 4.9).

4.2. Estructura del espacio latente 19

Fig. 4.8: Gráficos de varianza explicada por cada componente principal y de varianza total acumu-
lada.

Fig. 4.9: Primeras dos componentes principales de las posiciones codificadas en el espacio latente,
coloreando por la apertura jugada en sus correspondientes partidas.

También proyectamos al plano generado por la primera y tercera componente principal
(figura 4.10), y al plano generado por la segunda y tercera (figura 4.11).

20 4. Resultados

Fig. 4.10: Primera y tercera componente principal de las posiciones codificadas en el espacio latente,
coloreando por la apertura jugada en sus correspondientes partidas.

4.2. Estructura del espacio latente 21

Fig. 4.11: Segunda y tercera componentes principales de las posiciones codificadas en el espacio
latente, coloreando por la apertura jugada en sus correspondientes partidas.

4.2.2. Significado de las componentes

Exploramos visualmente el significado de las componentes principales coloreando las
posiciones según la presencia de determinadas piezas o estructuras.

Primera componente (PC1). Parece estar relacionada con el estado de los enroques.
Las posiciones suelen caen en regiones distintas según si los reyes están o no enrocados
(figuras 4.12 y 4.13). Mirando ambos gráficos se puede ver que esta componente tiene
regiones especializadas en las cuatro combinaciones posibles de blancas y negras enrocadas
y no enrocadas (con enroque corto, que es el que se obtiene cuando los reyes dejan de estar
en su columna inicial que es la e, y pasan a estar en la columna g).

22 4. Resultados

Fig. 4.12: Primeras dos componentes principales de las posiciones codificadas en el espacio latente,
coloreando según la casilla en la que está el rey negro

Fig. 4.13: Primeras dos componentes principales de las posiciones codificadas en el espacio latente,
coloreando según la casilla en la que está el rey blanco

Segunda y tercera componente. Estas componentes capturan caracteŕısticas rela-
cionadas con la estructura de peones centrales, es decir, los peones blancos y negros de
las columnas d y e. En las figuras 4.14, 4.15, 4.16 se puede ver el efecto que tienen estas
dos componentes en la ubicación del peón negro de la columna e, mientras que el de la
componente principal es casi nulo. Coloreamos cada punto según dónde está el peón en la
posición correspondiente, y la categoŕıa“otro” significa que en las tres casillas analizadas
hay o bien más de un peón del color en cuestión o bien ninguno. Algo similar ocurre con
los otros tres peones centrales, con la excepción de que para el peón blanco de la columna
e śı parece ser relevante la primera componente principal.

4.2. Estructura del espacio latente 23

Fig. 4.14: Primeras dos componentes principales de las posiciones codificadas en el espacio latente,
coloreando según la casilla en la que está el peón negro de la columna e.

Fig. 4.15: Primera y tercera componentes principales de las posiciones codificadas en el espacio
latente, coloreando según la casilla en la que está el peón negro de la columna e.

Fig. 4.16: Segunda y tercera componentes principales de las posiciones codificadas en el espacio
latente, coloreando según la casilla en la que está el peón negro de la columna e.

24 4. Resultados

Peón negro de la columna d (figuras 4.17, 4.18 y 4.19):

Fig. 4.17: Primeras dos componentes principales de las posiciones codificadas en el espacio latente,
coloreando según la casilla en la que está el peón negro de la columna d.

Fig. 4.18: Primera y tercera componentes principales de las posiciones codificadas en el espacio
latente, coloreando según la casilla en la que está el peón negro de la columna d.

Fig. 4.19: Segunda y tercera componentes principales de las posiciones codificadas en el espacio
latente, coloreando según la casilla en la que está el peón negro de la columna d.

4.2. Estructura del espacio latente 25

Peón blanco de e (figuras 4.20, 4.21 y 4.22):

Fig. 4.20: Primeras dos componentes principales de las posiciones codificadas en el espacio latente,
coloreando según la casilla en la que está el peón blanco de la columna e.

Fig. 4.21: Primera y tercera componentes principales de las posiciones codificadas en el espacio
latente, coloreando según la casilla en la que está el peón blanco de la columna e.

Fig. 4.22: Segunda y tercera componentes principales de las posiciones codificadas en el espacio
latente, coloreando según la casilla en la que está el peón blanco de la columna e.

26 4. Resultados

Peón blanco de d (figuras 4.23, 4.24 y 4.25):

Fig. 4.23: Primeras dos componentes principales de las posiciones codificadas en el espacio latente,
coloreando según la casilla en la que está el peón blanco de la columna d.

Fig. 4.24: Primera y tercera componentes principales de las posiciones codificadas en el espacio
latente, coloreando según la casilla en la que está el peón blanco de la columna d.

Fig. 4.25: Segunda y tercera componentes principales de las posiciones codificadas en el espacio
latente, coloreando según la casilla en la que está el peón blanco de la columna d.

4.3. Evaluación en posiciones fuera de distribución 27

Séptima componente. Se asocia con la presencia de un caballo blanco en la casilla
f3 (casilla muy común para un caballo blanco durante la apertura de una partida). Ver
figura 4.26.

Fig. 4.26: Primera y séptima componentes principales de las posiciones codificadas en el espacio
latente, coloreando según si hay o no un caballo blanco en la casilla f3.

4.3. Evaluación en posiciones fuera de distribución

Una pregunta cŕıtica que podemos hacernos es cuál es la manera en la que el autoen-
coder logra reducir la dimensión de posiciones de ajedrez: ¿aprendió de patrones comunes
del juego o solamente está guardando de alguna manera la información de la ubicación de
cada pieza?

Para responder a esta pregunta, realizamos experimentos para ver cómo responde el
autoencoder ante datos que siguen una distribución distinta a la del conjunto de entrena-
miento.

4.3.1. Partidas de jugadores con bajo Elo

Recolectamos posiciones provenientes de partidas entre jugadores con Elo menor o
igual a 1000 y con un control de tiempo de a lo sumo 180 segundos. Estas partidas están
considerablemente fuera de la distribución de las usadas en el entrenamiento. En la figura
4.33 se pueden ver algunas de estas posiciones y sus respectivas reconstrucciones.

Las métricas de reconstrucción en este caso fueron:

ECM: 0.02090.

NCMR: 10.97 (calculado con 1.000 posiciones).

Como se puede ver, el modelo reconstruye peor estas posiciones que las del conjunto
de testeo proveniente de la misma distribución que el de entrenamiento (el ECM aumentó

28 4. Resultados

en un 43% y el NCMR en un 45%). Esto sugiere que el autoencoder aprendió una repre-
sentación más ajustada al estilo de juego de partidas de alto nivel, y no espećıficamente
la información de la ubicación de cada pieza en el tablero.

Fig. 4.27: Posición original 1. Fig. 4.28: Posición original 2. Fig. 4.29: Posición original 3.

Fig. 4.30: Posición recons-
truida 1 (14 casillas
incorrectas).

Fig. 4.31: Posición recons-
truida 2 (9 casillas
incorrectas).

Fig. 4.32: Posición recons-
truida 3 (19 casillas
incorrectas).

Fig. 4.33: Ejemplos de posiciones originales de ajedrez de Elo bajo (≤ 1000) y poco tiempo en el
reloj (≤ 180 segundos) y sus respectivas reconstrucciones.

4.3.2. Posiciones reflejadas verticalmente

También analizamos el desempeño del modelo ante posiciones generadas artificialmente
mediante un proceso de reflexión vertical del tablero e intercambio de colores (ver figura
4.36). La idea es que una posición de blancas se convierte en una posición de negras (y
viceversa) con las piezas en simetŕıa vertical.

Para este tipo de posiciones, usando las mismas dos métricas obtuvimos

ECM: 0.01747, que fue calculado con posiciones generadas intercambiando colores y
reflejando verticalmente las del conjunto de testeo original (respecto del cual aumentó
19%). Para ver que la diferencia es significativa (ver figura 4.37), realizamos un test a
nivel aproximado α la hipótesisH0 : µ ≤ µ0 (donde µ la esperanza del ECM para este
tipo de posiciones y µ0 la de las originales). Suponemos que el número de muestras de
cada distribución (N=83595) es suficientemente grande, y usamos como estad́ıstico

T =
√
N X̄−µ0

s , donde X es el conjunto de muestras de ECMs de posiciones reflejadas

4.3. Evaluación en posiciones fuera de distribución 29

Fig. 4.34: Posición de ajedrez. Fig. 4.35: Posición de ajedrez reflejada vertical-
mente y con colores invertidos.

Fig. 4.36: Ejemplo de una posición y la que resulta de reflejarla verticalmente e invertir colores.

verticalmente, X̄ su promedio, y s el desv́ıo estándar muestral de los ECM de las
posiciones originales. Obtuvimos T = 129, 31, por lo que rechazamos la hipótesis.

NCMR: 9.17, que fue calculado con posiciones generadas con el mismo proceso de
recién a partir del conjunto de las 1.000 originales para esta métrica (respecto del
cual aumentó 21%).

Fig. 4.37: Histogramas de las distribuciones de ECM de ambos conjuntos de posiciones.

Este resultado sugiere que las posiciones de ajedrez no siguen una distribución simétrica
respecto del reflejo vertical, a pesar de ser un juego que en sus reglas y configuración inicial
śı lo es (con la úncia excepción de que las blancas juegan primero).

30 4. Resultados

4.3.3. Posiciones de otras etapas de la partida

Como el autoencoder fue entrenado usando solamente posiciones correspondientes a la
movida 20 de cada partida, es esperable que el error de reconstrucción también aumente si
lo medimos con posiciones correspondientes a otra etapa del juego. Esto puede verse en la
figura 4.38. El gráfico muestra el ECM de conjuntos de 100 mil posiciones corresondientes
a cada etapa del juego, excepto por el primer punto (el de abajo a la izquierda) que se
correponde con el ECM original calculado en la sección 4.1. Es razonable que el error
aumente a medida que la etapa de la partida con la que se lo mide se aleja de las 20
jugadas, porque las posiciones suelen ser cada vez más diferentes (por ejemplo, tienen
cada vez menos piezas en el tablero). Ver figura 4.45.

Fig. 4.38: Error de reconstrucción del autoencoder (ECM) medido con conjuntos de posiciones
correspondientes a distintas etapas del juego.

Fig. 4.39: 20 movidas. Fig. 4.40: 30 movidas. Fig. 4.41: 40 movidas.

Fig. 4.42: 50 movidas. Fig. 4.43: 60 movidas. Fig. 4.44: 70 movidas.

Fig. 4.45: Distintas etapas de una misma partida, contando movidas desde la posición inicial.

5. CONCLUSIONES

En este trabajo entrenamos y analizamos un autoencoder para representar posiciones
de ajedrez en un espacio latente de baja dimensión. Mostramos que el modelo logra una
reconstrucción razonable de las posiciones originales y que su representación interna cap-
tura estructuras relevantes del juego, como el estado del enroque y la disposición de los
peones centrales.

Además, exploramos la performance del modelo ante posiciones at́ıpicas, como aquellas
jugadas por jugadores principiantes; o posiciones generadas reflejando verticalmente e
invirtiendo colores de otras ya existentes. En ambos casos, observamos una degradación
en la calidad de reconstrucción, lo cual sugiere que el autoencoder ha aprendido patrones
caracteŕısticos del ajedrez de alto nivel.

Estos resultados muestran que es posible construir representaciones comprimidas de
posiciones de ajedrez que preservan información estratégica y táctica, abriendo la puer-
ta a futuras aplicaciones en análisis automático de partidas, generación de contenido y
aprendizaje no supervisado en juegos.

31

32 5. Conclusiones

Bibliograf́ıa

[1] Computer Generates Human Faces, CodeParade, YouTube, 2017. https://youtu.
be/4VAkrUNLKSo?si=TJFrx0qbFOjkJFnB

[2] Lichess Database. Lichess, 2025. https://database.lichess.org/

[3] Chess rating systems. Lichess, 2025. https://lichess.org/page/rating-systems

[4] Caulfield, Tristan. Undergraduate Dissertation: Acquiring and Using Knowledge in
Computer Chess. University of Bath, Department of Computer Science, 2004. https:
//purehost.bath.ac.uk/ws/portalfiles/portal/529627/CSBU-2004-17.pdf

[5] Caulfield, Tristan, and Joanna J. Bryson. Chess by Imitation.

[6] Ezequiel Cribioli, Evolutive EigenGame: Resolviendo PCA con un algoritmo evo-
lutivo.Tesis de Licenciatura en Ciencias Matemáticas, Departamento de Matemáti-
ca, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
2022. https://cms.dm.uba.ar/academico/carreras/licenciatura/tesis/2022/

Cribioli%20-%20tesis.pdf

[7] Gayen, Sutanu. Chess Endgame Classifier using Machine Learning. (2012).
https://www.cse.iitk.ac.in/users/cs365/2012/submissions/sutanug/cs365/

projects/report.pdf

[8] Goodfellow, Ian; Bengio, Yoshua; Courville, Aaron (2016). 14. Autoencoders. Deep
learning. Adaptive computation and machine learning. Cambridge, Mass: The MIT
press. ISBN 978-0-262-03561-3.

[9] Jolliffe, I. T. (2002). Principal Component Analysis. Springer Series in Statistics. New
York: Springer-Verlag. doi:10.1007/b98835. ISBN 978-0-387-95442-4.

[10] Kapicioglu, Berk, et al. Chess2vec: learning vector representations for chess. arXiv
preprint arXiv:2011.01014 (2020). https://arxiv.org/pdf/2011.01014

[11] Maesumi, Arman. Playing chess with limited look ahead. arXiv preprint ar-
Xiv:2007.02130 (2020). https://arxiv.org/pdf/2007.02130

[12] David, Omid E., Nathan S. Netanyahu, and Lior Wolf. Deepchess: End-to-end
deep neural network for automatic learning in chess. Artificial Neural Networks and
Machine Learning–ICANN 2016: 25th International Conference on Artificial Neural
Networks, Barcelona, Spain, September 6-9, 2016, Proceedings, Part II 25. Springer
International Publishing, 2016. https://arxiv.org/pdf/1711.09667

Chau chau chauuuuuuuuuuu

33

